Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous
cannonical link button


Control and Cybernetics

Tytuł artykułu

k-centroids clustering for asymmetric dissimilarities

Autorzy Olszewski, D. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN In this paper, an asymmetric version of the kcentroids clustering algorithm is proposed. The asymmetry arises from the use of the asymmetric dissimilarities in the k-centroids algorithm. Application of the asymmetric measures of dissimilarity is motivated by the basic nature of the k-centroids algorithm, which uses dissimilarities in the asymmetric manner. It finds the minimal dissimilarity between an object being currently allocated, and one of the clusters centroids. Clusters centroids are treated as the dominant points governing the asymmetric relationships in the entire cluster analysis. The results of the experimental study on real and simulated data have shown the superiority of the asymmetric dissimilarities employed for the k-centroids method over their symmetric counterparts.
Słowa kluczowe
EN k-centroids clustering   asymmetric dissimilarity   sound recognition   heart rhythm recognition   feature extraction  
Wydawca Systems Research Institute, Polish Academy of Sciences
Czasopismo Control and Cybernetics
Rocznik 2011
Tom Vol. 40, no 2
Strony 554--574
Opis fizyczny Bibliogr. 21 poz.
autor Olszewski, D.
Chaturvedi, A., Carroll, J.D., Green, P.E., Rotondo, J.A. (1997) A Feature-based Approach to Market Segmentation via Overlapping KCentroids Clustering. Journal of Marketing Research 34 (3), 370-377.
Chernoff, H. (1952) A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the Sum of Observations. The Annals of Mathematical Statistics 23 (4), 493–507.
Czekala, M. and Kuziak, K. (1999) Clustering of Stocks in Risk Context. In: Classification in the Information Age. Studies in Classification, Data Analysis, and Knowledge Organization. Springer-Verlag, Berlin, 447-452.
Fraley, C. and Raftery, A.E. (2006) MCLUST version 3 for R: Normal Mixture Modeling and Model-Based Clustering. Tech. Rep. No. 504. Department of Statistics, University of Washington.
Gibbs, A.L. and Su, F.E. (2002) On Choosing and Bounding Probability Metrics. International Statistical Review 70 (3), 419-435.
Kanungo, T., Mount, D.M., Netanyahu, N.S. and Piatko, C.D., Silverman, R., Wu, A.Y. (2002) An Efficient k-Means Clustering Algorithm: Analysis and Implemetation. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (7), 881-892.
Kullback, S. and Leibler, R.A. (1951) On Information and Sufficiency. The Annals of Mathematical Statistics 22 (1), 79-86.
Leisch, F. (2006) A Toolbox for K-Centroids Cluster Analysis. Computational Statistics & Data Analysis 51(2), 526-544.
Lissack, T. and Fu, K.S. (1976) Error Estimation in Pattern Recognition via Lα- Distance Between Posterior Density Functions. IEEE Transactions on Information Theory IT-22 (1), 34-45.
MacQueen, J. (1967) Some Methods for Classification and Analysis of Multivariate Observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. 1, 281-297.
Martín-Merino, M. and Muñoz, A. (2005) Visualizing Asymmetric Proximities with SOM and MDS Models. Neurocomputing 63, 171-192.
Muñoz, A., Martin, I. and Moguerza, J.M. (2003) Support Vector Machine Classifiers for Asymmetric Proximities. In: Artificial Neural Networks and Neural Information Processing – ICANN/ICONIP 2003, Joint International Conference ICANN/ICONIP 2003. LNCS 2714, Springer- Verlag, 217-224.
Okada, A. (2000) An Asymmetric Cluster Analysis Study of Car Switching Data. In: Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin-Heidelberg.
Okada, A. and Imaizumi, T. (1997) Asymmetric Multidimensional Scaling of Two-Mode Three-Way Proximities. Journal of Classification 14 (2), 195-224.
Okada, A. and Imaizumi, T. (2007) Multidimensional Scaling of Asymmetric Proximities with a Dominance Point. In: Advances in Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin-Heidelberg, 307-318.
Olszewski, D. (2011) Asymmetric k-Means Algorithm. In: Adaptive and Natural Computing Algorithms - 10th International Conference, ICANNGA 2011. LNCS 6594, Springer, 1-10.
Olszewski, D., Kolodziej, M. and Twardy, M. (2010) A Probabilistic Component for K-Means Algorithm and its Application to Sound Recognition. Przeglad Elektrotechniczny 86 (6), 185-190.
R Development Core Team (2010) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Selim, S.Z. and Ismail, M.A. (1984) K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI -6 (1), 81-87.
Steinhaus, H. (1956) Sur la Division des Corps Matériels en Parties. Bulletin de l’Académie Polonaise des Sciences, C1. III 4 (12), 801-804.
Xiong, H., Wu, J. and Chen, J. (2009) K-Means Clustering Versus Validation Measure: A Data-Distribution Perspective. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 39 (2), 318-331.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BATC-0008-0016