Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BATC-0008-0013

Czasopismo

Control and Cybernetics

Tytuł artykułu

Algorithms for integral solutions of a class of diophantine equations

Autorzy Polak, A. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In 1970 a negative solution to the tenth Hilbert problem, concerning the determination of integral solutions of diophantine equations, has been published by Y. W. Matiyasevich (see Matiyasevich, 1970). Despite this result, we can present algorithms to compute integral solutions (roots) for a wide class of quadratic diophantine equations of the form q(x) = d, where q : Zn→ Z is a homogeneous quadratic form. We will focus on the roots of one (i.e., d = 1) of quadratic Euler forms of selected posets from Loupias list (see Loupias, 1975). In particular, we will describe the roots of positive definite quadratic forms and the roots of quadratic forms that are principal (see Simson, 2010a). The algorithms and results we present here are successfully used in the representation theory of finite groups and algebras.
Słowa kluczowe
EN integral quadratic form   unit form   diophantine equations   roots   Euler bilinear form   Euclidean diagrams   mesh quiver   algorithm   Maple  
Wydawca Systems Research Institute, Polish Academy of Sciences
Czasopismo Control and Cybernetics
Rocznik 2011
Tom Vol. 40, no 2
Strony 491--514
Opis fizyczny Bibliogr. 16 poz.
Twórcy
autor Polak, A.
  • Faculty of Mathematics and Computer Science, Nicolaus Copernicus University ul. Chopina 12/18, 87-100 Toruń, Poland, apolak@mat.umk.pl
Bibliografia
Adleman, L. and Manders, K. (1976) Diophantine complexity, Proc. 17th IEEE Symposium on Foundations of Computer Science, Proc. IEEE, New York, 81-88.
Barot, M. and de la Pena, J.A. (1999) The Dynkin type of a non-negative unit form, Expo. Math., 17, 339-348
Buchmann, J. and Vollmer, U. (2007) Binary Quadratic Forms: An Algorithmic Approach (Algorithms and Computation in Mathematics). Springer, Berlin-Heidelberg.
Drozdowski, G. and Simson, D. (1978) Remarks on posets of finite representation type, http : //www −users.mat.umk.pl/ simson/Drozdowski-Simson1978.pdf. Wydział Matematyki i Informatyki UMK, Toruń.
Loupias, M. (1975) Indecomposable representations of finite partially ordered sets. Lecture Notes in Math., 488, Springer-Verlag, Berlin-Heidelberg-New York, 201-209.
Marczak,M., Polak,A. and Simson,D. (2010) P-critical integral quadratic forms and positive unit forms: An algorithmic approach. Linear Algebra and its Applications, 433, 1873-1888.
Matiyasevich, Y. (1970) Enumerable sets are Diophantine. Doklady Akademii Nauk SSSR, 191, English translation in Soviet Mathematics Doklady, 11 (2), 279-282.
Polak, A. and Simson, D. (2010) Peak P-critical Tits forms of one-peak posets, preprint.
Ringel, C.M. (1984) Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., 1099, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo.
Simson, D. (1992) Linear Representations of Partially Ordered Sets and Vectors Space Categories. Algebra, Logic and Applications, 4. Gordon & Breach Science Publishers, Switzerland.
Simson, D. (1992) Diagramy Coxetera-Dynkina i problemy macierzowe (Coxeter-Dynkin diagrams and matrix problems; in Polish). Instytut Matematyki UMK, Toruń.
Simson, D. (2004-2009) Pierwiastki funkcjonałów kwadratowych, diagramy Dynkina i zbiory częściowo uporządkowane (Roots of square functionals, Dynkin diagrams and partially ordered sets; in Polish). Wyklad monograficzny, Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń.
Simson, D. (2010a) Mesh geometries of root orbits of integraf quadratic forms. J. Pure Appl. Algebra, 215, 13-34 .
Simson, D. (2010b) Integral bilinear forms, Coxeter transformations and Coxeter polynomials of finite posets. Linear Algebra and Appl., 433, 699-717.
Simson, D. (2011) Mesh algorithms for solving principal diophantine equations, Sand-glass tubes and tori of roots. Fundamenta Informaticae, 109, 425-462.
Zavadskij, A.G. and Shkabara, A.S. (1976) Commutative quivers and matrix algebras of finite type. Preprint IM-76-3, Institute of Mathematics AN USSR, Kiev (in Russian).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BATC-0008-0013
Identyfikatory