Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultrasonic study of CuxAg1-xInTe2 bulk material

Warianty tytułu
Języki publikacji
Longitudinal and shear ultrasonic wave velocities were measured in the quaternary compounds CuxAg1¡xInTe2 (0 · x · 1) using pulse echo technique. Measurements were carried out at 4 MHz frequency and at room temperature. Elastic moduli and acoustic impedance have been calculated. Results indicated that these parameters are influenced by the increased addition of copper from x = 0 to 1.
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
  • [1] DAVID J., CHEEKE N., Fundamentals and aplications of ultrasonicwaves, CRC Press, Boca Raton, FL, 2002.
  • [2] SHAY J.L., WERNICK J.H., Ternary chalcopyrite semiconductors: growth, electronic properties and applications, Pergamon Press, Oxford 1975.
  • [3] JAFFE J.E., ZUNGER A., Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2, Phys. Rev. B, 28, 5822 (1983).
  • [4] IDEM., ibid., Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors, 29, 1882 (1984).
  • [5] IDEM., ibid., Anion displacements and the band-gap anomaly in ternary ABC2 chalcopyrite semiconductors, 27, 5176 (1983).
  • [6] NORMAN F.M. HENRY, KATHLEEN L., International tables for X-ray crystallography, Vol. 1, p. 212, KYNOCH PRESS, Birmingham-England 1969.
  • [7] KUROSAKI K., UNEDA H., MUTA H., YAMANAKA S., Thermoelectric properties of thallium antimony telluride, J. Alloys and Compounds, 376, 43 (2004).
  • [8] KRIEGER M., SIGG H., REINHART F.K., Elastic constant C11 of AlxGa1¡xAs determined by near infrared Brillouin scattering, Solid State Communications, 88, 267 (1993).
  • [9] TSUCHIYA Y., HISAKABE M., Structural changes in molten (GaxIn1¡x)As: Sound velocity measurements, J. Non-Cryst. Solids, 353, 3000 (2007).
  • [10] VARSHNEYA A.K., Fundamentals of inorganic glasses, Acad. Press, New York (1994).
  • [11] MOUSTAFA A.M., EL-SAYAD E.A., SAKR G.B., Crystal structure refinement of CuxAg1¡xInTe2 bulk material determined from X-ray powder diffraction data using the Rietveld method, Cryst. Res. Technol., 39, 266 (2004).
  • [12] KHALIFA F.A., EL-HADI Z.A., MOUSTAFFA F.A., HASSAN N.A., Density and molar volume of some sodium silicate, lead borate and lead silicate glasses, Indian J. Pure Appl. Phys., 27, 279 (1989).
  • [13] HOLLEMAN A.F., WIBERG E., WIBERG N., Lehrbuch der Anorganischen Chemie, 91–100 ed., Walter de Gruyter, Berlin 1985.
  • [14] MAKISHIMA A., MACKENZIE J.D., Direct calculation of Young’s modulus of glass, J. Non-Cryst. Solids, 12, 35 (1973).
  • [15] MAKISHIMA A., MACKENZIE J.D., Calculation of bulk modulus, shear modulus and Poisson’s ratio of glass, J. Non-Cryst. Solids, 17, 147 (1975).
  • [16] GRZETA–PLENKOVIC B., SANTIC, Crystal data for CuGaxIn1¡xTe2, J. Appl. Crystallogr., 16, 576 (1983).
  • [17] KNIGHT K.S., The crystal structures of CuInSe2 and CuInTe2, Mater. Res. Bull., 27, 161 (1992).
  • [18] WOOLLEY J.C., WILLIAMS E.W., Some cross-substitutional alloys of CdTe, J. Electrochem. Soc., 113, 899 (1966).
  • [19] RAJENDRAN V., PALANIVELU N., CHAUDHURI B.K., GOSWAMI K., Characterisation of semiconducting V2O5–Bi2O3–TeO2 glasses through ultrasonic measurements, J. Non-Cryst. Solids, 320, 195 (2003).
  • [20] BRIDGE B., HIGAZY A., A model of the compositional dependence of the elastic moduli of polycomponent oxide glasses, Phys. Chem. Glasses, 27, 1 (1986).
  • [21] BRIDGE B., PATEL N.D., WATERS D.N., On the elastic constants and structure of the pure inorganic glasses, Phys. Stat. Sol. (a), 77, 655 (1983).
  • [22] ANDERSON O.L., Physical acoustics, Warren P. Mason ed., Academic Press, New York, (III) B, 45 (1965).
  • [23] WANKHEDE D.S., WANKHEDE N.N., LANDE M.K., ARBAD B.R., Densities and ultrasonic velocities of some oxygen containing compounds, Journal of Molecular Liquids, 138, 124 (2008).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.