Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button


Archives of Hydro-Engineering and Environmental Mechanics

Tytuł artykułu

Size Effect in Centrifuge Cone Penetration Tests

Autorzy Bałachowski, L. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN In-flight penetration tests with 12 mm mini-cone, were performed in the centrifuge of L.C.P.C. in Nantes, in two uniform quartz sands of different grain size. Stress level effect and particle size effect on the cone resistance were analyzed. Geometry and particle size effects were found for cone penetration in coarse sand especially at a penetration less than the critical depth. The irregularities on the profile of mini-cone penetration in coarse sand can be attributed to particle size effect. The evidence of geometry size effect was not very marked for the relatively narrow range of acceleration applied.
Słowa kluczowe
EN centrifuge   CPT   quartz sands   grain size  
Wydawca Institute of Hydro-Engineering, Polish Academy of Sciences
Czasopismo Archives of Hydro-Engineering and Environmental Mechanics
Rocznik 2007
Tom Vol. 54, nr 3
Strony 161--181
Opis fizyczny Bibliogr. 36 poz., il.
autor Bałachowski, L.
  • Civil Engineering and Environmental Faculty, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-952 Gdańsk, Poland,
1. Bałachowski L. (1995) Diff´erents aspects de la mod´elisation physique du comportement des pieux: Chambre d’Etalonnage et Centrifugeuse, Th‘ese de doctorat, Institut National Polytechnique de Grenoble, France.
2. Bałachowski L. (2006) Scale effect in shaft friction from the interface direct shear tests, Archives of Civil and Mechanical Engineering, VI (3), 13–28.
3. Bolton M. D. and Lau C. K. (1988) Scale effects arising from particle size, Proceedings International Conference Cenrifuge’88, Ed. J. F. Cort´e, 127–131.
4. Bolton M. D., Gui M. W., Garnier J., Cort´e J. F., Bagge G., Laue J. and Renzi R. (1999) Centrifuge cone penetration tests in sand, G´eotechnique, 49 (4), 543–552.
5. Boulon M. and Foray P. (1986) Physical and numerical simulation of lateral shaft friction along offshore piles in sand, 3rd Int. Conference on Numerical Methods in Offshore Piling, Nantes, 127–147.
6. Chow F. C. (1997) Investigations into the behaviour of displacement piles for offshore structures, PhD Thesis, University of London (Imperial College), U.K.
7. Corté J.-F. (1989) General report/Discussion session 11: Model testing-Geotechnical model tests, Proceedings of the XII ICSMFE, Rio de Janeiro, 13–18 August, 2553–2571.
8. Dano C., Thorel L. and Rault G. (2005) Interpr´etation des essais au pressiom‘etre miniature en centrifugeuse, Proc. of International Symposium ISP5 – Pressio 2005, Marne-la-Vall´ee, Eds. M. Gambin, D. Magnan and Ph. Mestat, 1, 247–254.
9. De Lima D. C. and Tumay M. T. (1991) Scale effects in cone penetration tests, Geotechnical special publication of ASCE, Ed. F. G. McLean, No. 27, 38–51.
10. De Nicola A. and Randolph M. F. (1999) Centrifuge modelling of pipe piles in sand under axial loads, G´eotechnique, 49 (3), 295–318.
11. Fioravante V. (2002) On the shaft friction modelling of non-displacement piles in sand, Soils and Foundations, 42 (2), 23–33.
12. Foray P., Bałachowski L. and Rault G. (1998) Scale effect in shaft friction due to the localisation of deformations, Centrifuge’98, Tokyo, Eds. T. Kimura et al, Balkema, 1, 211–216.
13. Garnier J. (1997) Validation of numerical and physical models: Problem of scale effects, Proceedings of XIV International Conference on Soil Mechanics and Foundation Engineering, Hamburg, 659–662.
14. Garnier J. (2002) Properties of soil samples used in centrifuge models, Proceedings Physical modelling in Geotechnics: ICPMG’02, Ed. R. Philips, P. J. Guo and R. Popescu, Swets and Zeitlinger Lisse, 5–19.
15. Garnier J. and König D. (1998) Scale effects in piles and nails loading tests in sands, Centrifuge’98, Tokyo, Eds. T. Kimura et al, Balkema, 1, 205–210.
16. Gui M. W. and Bolton M. D. (1998) Geometry and scale effects in CPT and pile design, Proceedings of International Conference Geotechnical Site Characterization, Eds. P. Robertson and P. Mayne, Balkema, Rotterdam, 1063–1068.
17. Gui M. W., Bolton M. D., Garnier J., Cort´e J. F., Bagge G., Laue J. and Renzi R. (1998) Guidelines for cone penetration tests in sand, Centrifuge’98, Tokyo, Eds. T. Kimura et al, Balkema, 1, 155–160.
18. Habib P. (1985) Effet d’´echelle et surface de glissement, Revue Franc¸aise de G´eotechnique, (31), 5–10.
19. Jamiolkowski M., Ghionna V. N., Lancelotta R. and Pasqualini E. (1988) New correlations of penetration tests for design practice, Proceedings of the 1st International Symposium on Penetration Testing, (I.S.O.P.T.), Orlando, 20–24 March, 1, 263–296.
20. Jamiolkowski M., Lo Presti D. C. F. and Manassero M. (2001) Evaluation of Relative Density and Shear Strength of Sands from CPT and DMT, Symposia in Honor of C. C. Ladd Soil behaviour and Soft Ground Construction, Geotechnical Special Publications, No. 119, 5–6 October, Cambridge, Massachusetts, USA.
21. Kérisel J. (1962) Fondations profondes, Annales de l’ITBTP, S´erie Sols et Fondations, No. 39, Paris, Novembre 1962.
22. Kimura T., Kusakabe O. and Saitoh K. (1985) Geotechnical model tests of bearing capacity problems in a centrifuge, G´eotechnique, 35 (1), 33–45.
23. Kusakabe O., Yamaguchi H. and Morikage A. (1991) Experimental analysis on the scale effect of N for circular and rectangular footings, Proceedings of the International Conference Centrifuge’91, Balkema, Rotterdam, 179–186.
24. Kutter B. L., Chang J.-D. and Davies B. C. (1994) Collapse of cavities in sand and particle size effects, Proceedings of International Conference Centrifuge’94, Eds. C. Leung, F. H. Lee and T. S. Tan, Balkema, Rotterdam, 809–815.
25. L.C.P.C. information materials, Nantes.
26. Lehane B. M., Gaudin C. and Schneider J. A. (2005) Scale effects on tension capacity for rough piles buried in dense sand, G´eotechnique, 55 (10), 709–719.
27. Lehane B. M. and White D. J. (2005) Lateral stress changes and shaft friction for model displacement piles in sand, Canadian Geotechnical Journal, 42 (4), 1039–1052.
28. Lunne T., Robertson P. K. and Powel J. J. M. (1997) Cone Penetration Testing in Geotechnical Practice, Blackie Academic and Professional.
29. Ovesen N. K. (1979) The scaling law relationship, Panel discussion, Proc. 7th European Conf. On Soil Mech. and Found. Eng., Brighton, 4, 319–323.
30. Reddy E. S., Chapman D. N. and Sastry V. V. R. N. (2000) Direct shear interface test for shaft capacity of piles in sand, Geotechnical Testing Journal, 23 (2), 199–205.
31. Sokołowski V. V. (1965) Statics of Granular Media, Pergamon Press, Inc., Tarrytown, N.Y.
32. Stone K. J. L. and Wood M. (1992) Effects of dilatancy and particle size observed in model tests on sand, Soils and Foundations, 32 (4), 43–57.
33. Tatsuoka F., Okahara M., Tanaka T., Tani K., Morimoto T. and Siddiquee M. (1991) Progressive failure and particle size effect in bearing capacity of a footing on sand, Geotechnical Engineering Congress, Geotechnical Special Publication of ASCE, No. 27, 788–802.
34. Wernick E. (1977) Stresses and strains on the surface of anchors, IX. ICSMFE, Tokyo, Special Session 4, 113–119.
35. White R. J., Stone K. J. L. and Jewell R. J. (1994) Effect of particle size on localisation development in model tests on sand, Proceedings of International Conference Centrifuge’94, Eds. C. Leung, F. H. Lee and T. S. Tan (eds), Balkema, Rotterdam, 817–822.
36. Yu H. S. and Mitchell J. K. (1998) Analysis of cone resistance: review of methods, Journal of Geotechnical and Geoenvironmental Engineering, 124 (2), 140–149.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BATA-0001-0001