Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Archives of Mechanics

Tytuł artykułu

A variational principle applied to the dynamics of a liquid with diffusing gas bubbles

Autorzy Giovine, P. 
Treść / Zawartość
Warianty tytułu
Konferencja International Conference on Continuous and Discrete Modelling in Mechanics (05-09.09.2005 ; Warsaw ; Poland)
Języki publikacji EN
EN The dynamic balance equations for bubbly liquids are deduced by evaluating the variation of a spatial Hamiltonian functional for immiscible mixtures. The constraint of incompressibility for the liquid is considered by choosing suitable "paths" of variation for the functions which describe the motion of the mixture and, although this appears to be a novelty, the equations obtained are in agreement with those derived from other theories, except for an inviscid drag term due to inertia forces and depending on changes of the radius of bubbles.
Słowa kluczowe
PL zasada Hamiltona   dynamiczna zależność równowagi   niemieszalne mieszaniny   płyny pęcherzykowe  
EN Hamilton’s principle   dynamical balance equations   immiscible mixtures   bubbly liquids  
Wydawca Instytut Podstawowych Problemów Techniki PAN
Czasopismo Archives of Mechanics
Rocznik 2006
Tom Vol. 58, nr 4-5
Strony 363--380
Opis fizyczny Bibliogr. 20 poz.
autor Giovine, P.
  • Dipartimento di Meccanica e Materiali, Universita Mediterranea Via Graziella, 1, Localita Feo di Vito, I-89060 Reggio Calabria, Italy,
1. P. GIOVINE, Sulla dinamica di una miscela di due fluidi comprimibili e non miscibili, Rend. Mat. Ace. Lined, 1, 9, 377-385, 1990.
2. E.G. VIRGA, On the variation of the Hamiltonian functional for an immiscible mixture, Arch. Rat. Mech. Analysis, 103, 51-59, 1989.
3. F. BAMPI, A. MORRO, The inverse problem of the calculus of variations applied to continuum physics, J. Math. Physics, 23-11, 2312-2321, 1982.
4. F. BAMPI, A. MORRO, The connection between variational principles in Eulerian and Lagrangian descriptions, J. Math. Physics, 25, 2418-2421, 1984.
5. G. CAPRIZ, Spatial variational principles in continuum mechanics, Arch. Rat. Mech. Analysis, 85, 2, 99-109, 1984.
6. G. CAPRIZ, P. GIOVINE, On effects of virtual inertia during diffusion of a dispersed medium in a suspension, Arch. Rat. Mech. Analysis, 98, 2, 115-122, 1987.
7. L. PRANDTL, O.G. TIETJENS, Applied Hydro- and Aeromechanics, Dover Publications Inc., New York 1934.
8. D.A. DREW, R.T. LAHEY JR., Application of general constitutive principles to the derivtion of multi-dimensional two-phase flow equations, Int. J. Multi. Flow, 5, 243-264, 1979.
9. D.Z. ZHANG, A. PROSPERETTI, Ensemble phase-averaged equations for bubbly flows, Phys. Fluids, 6, 2956-2970, 1994.
10. A. BIESHEUVEL, L. VAN WIJNGAARDEN, Two-phase flow equations for a dilute dispersion of gas bubbles in liquid, J. Fluid Mech., 148, 301-318, 1984.
11. D.S. DRUMHELLER, A. BEDFORD, A theory of bubbly liquids, J. Acoust. Soc. Am., 66, 197-208, 1979.
12. R.M. BOWEN, Diffusion models implied by the theory of mixtures [in:] C. Truesdell, Rational Thermodynamics (2nd edition), Springer-Verlag, 237-263, New York 1984.
13. P. GIOVINE, The theory of continua with voids as a basis for the study of aerated lubrication, Proc. of 4-th AIMETA Congress on Tribology, 161-168, Pisa 1996.
14. H. LAMB, Hydrodynamics (6-th edition), Cambridge University Press, New York 1953.
15. G. CAPRIZ, P. GIOVINE, On micro structural inertia, Math. Model Meth. Appl. Sc., 7, 211-216, 1997.
16. I.M. GELFAND, S.V. FOMIN, Calculus of variations, Prentice-Hall Inc., Englewood Cliffs, New Jersey 1963.
17. C. TRUESDELL, Thermodynamics of diffusion, [in:] Rational Thermodynamics (2-nd edition), Springer-Verlag, 218-236, New York 1984.
18. D.Y. HSIEH, On dynamics of bubbly liquids, Adv. in Appl. Mech., 26, 63-133, 1988.
19. J.E. ADKINS, Nonlinear diffusion II. Constitutive equations for mixtures of isotropic fluids, Phil. Trans. R. Soc. London, A255, 635-648, 1963.
20. R.T. LAHEY JR., S. SIM, D.A. DREW, An evaluation of interfacial drag models for bubbly two-phase flows, ASME Symposium on Nonequilibrium Transfer Processes, 1979.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BAT7-0002-0014