Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Control and Cybernetics

Tytuł artykułu

Lyapunov functional for a linear system with both lumped and distributed delay

Autorzy Duda, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The paper presents a method of determining the Lyapunov quadratic functional for linear tirne-invariant system with both lumped and distributed delay. The Lyapunov functional is constructed for its given time derivative, which is calculated on the trajectory of the system with both lumped and distributed delay. The method presented gives analytical formulas for the coefficients of the Lyapunov functional.
Słowa kluczowe
EN Lyapunov functional   time delay system   LTI system  
Wydawca Systems Research Institute, Polish Academy of Sciences
Czasopismo Control and Cybernetics
Rocznik 2011
Tom Vol. 40, no 1
Strony 73--90
Opis fizyczny Bibliogr. 26 poz., wykr.
autor Duda, J.
  • Institute of Automatic Control, AGH University of Science and Technology, Cracow, Poland
DUDA, J. (1986) Parametric optimization problem for systems with time delay. PhD thesis, AGH University of Science and Technology, Poland.
DUDA, J. (1988) Parametric optimization of neutral linear system with respect to the general quadratic performance index. Archiwum Automatyki i Telemechaniki, 33(3), 448-456.
DUDA, J. (2010a) Lyapunov functional for a linear system with two delays. Control and Cybernetics, 39(3), 797-809.
DUDA, J. (2010b) Lyapunov functional for a linear system with two delays both retarded and neutral type. Archwes of Control Sciences, 20 (LVI) (1), 89-98.
DUDA, J. (2010c) Lyapunov functional for a system with k-non-commensurate neutral time delays. Control and Cybernetics, 39(4).
FRIDMAN, E. (2001) New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Systems & Control Letters, 43, 309-319.
FRIDMAN, E., SHAKED, U. and LIU, K. (2009) New conditions for delay-derivative-dependent stability. Automatica, 45, 2723-2727.
GÓRECKI, H., FUKSA, S., GRABOWSKI, P. and KORYTOWSKI, A. (1989) Analysis and Synthesis of Time Delay Systems. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore.
GU, K. (1997) Discretized LMI set in the Stability Problem of Linear Time Delay Systems. International Journal of Control, 68, 923-934.
GU, K. and LIU, Y. (2009) Lyapunov-Krasovskii functional for uniform stability of coupled differential-functional equations. Automatica, 45, 798-804.
HAN, Q.L. (2004) On robust stability of neutral systems with time-varying discrete delay and norm-bounded uncertainty. Automatica, 40, 1087-1092.
HAN, Q.L. (2004) A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays. Automatica, 40, 1791-1796.
HAN, Q.L. (2005a) A new delay-dependent stability criterion for linear neutral systems with norm-bounded uncertainties in all system matrices. International Journal of Systems Science, 36, 469-475.
HAN, Q.L. (2005b) On stability of linear neutral systems with mixed time delays: A discretised Lyapunov functional approach. Automatica, 41, 1209-1218.
HAN, Q.L. (2009a) A discrete delay decomposition approach to stability of linear retarded and neutral systems. Automatica, 45, 517-524.
HAN, Q.L. (2009b) Improved stability criteria and controller design for linear neutral systems. Automatica, 45, 1948-1952.
INFANTE, E.F. and CASTELAN, W.B. (1978) A Liapunoy Functional For a Matrix Difference-Differential Equation. J. Differential Equations, 29, 439-451.
IVANESCU, D., NICULESCU, S.L, DUGARD, L. and DION, J.M., VERRIEST, E.I. (2003) On delay-dependent stability for linear neutral systems. Automatica, 39,255-261.
KHARITONOY, V.L. (2005) Lyapunov functionals and Lyapunov matrices for neutral type time delay systems: a single delay case. International Journal of Control, 78(11), 783-800.
KHARITONOY, V.L. (2008) Lyapunov matrices for a class of neutral type time delay systems. International Journal of Control, 81(6), 883-893.
KHARITONOY, V.L., HINRICHSEN, D. (2004) Exponential estimates for time delay systems. Systems & Control Letters, 53, 395-405.
KHARITONOY, V.L. and PLISCHKE, E. (2006) Lyapunov matrices for time-delay systems. Systems & Control Letters, 55, 697-706.
KHARITONOY, V.L. and ZHABKO, A.P. (2003) Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems. Automatica, 39, 15-20.
KLAMKA, J. (1991) Controllability of Dynamical Systems. Kluwer Academic Publishers, Dordrecht.
REPIN, YU.M. (1965) Quadratic Lyapunov functionals for systems with delay. Prikl. Mat. Mekh., 29, 564-566.
RlCHARD, J.P. (2003) Time-delay systems: an overview of some recent advances and open problems. Automatica, 39, 1667-1694.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BAT5-0070-0005