Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Takagi-Sugeno fuzzy control scheme for electrohydraulic active suspensions

Treść / Zawartość
Warianty tytułu
Języki publikacji
The paper presents a new control strategy for active vehicle suspensions using electrohydraulic actuators based on Takagi-Sugeno (T-S) fuzzy modelling technique. As the electrohydraulic actuator dynamics is highly nonlinear, the T-S fuzzy modelling technique using the idea of "sector nonlinearity" is applied to exactly represent the nonlinear dynamics of electrohydraulic actuator in a denned region at first. Then, by means of parallel distributed compensation (PDC) scheme and Lyapunov method, a fuzzy HOO controller is designed for the T-S fuzzy model to optimise the suspension ride comfort performance, considering actuator input voltage saturation problem. The sufficient conditions for the existence of such a controller are derived in terms of linear matrix inequalities (LMIs). The advantage of this new control strategy for electro-hydraulic active suspensions is that it directly aims at optimising suspension performance with guaranteeing the closed-loop system stability. Thus, two-loop control strategy, where the inner loop is used to make the electrohydraulic actuator tracking a desired force (pressure, or displacement, etc.), is not necessary. In addition, the controller is simple in structure compared to the adaptive control algorithms. A numerical example is used to validate the effectiveness of the proposed approach. It is confirmed by the simulations that the designed controller can achieve better performance than the active suspension with optimal skyhook damper.
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
  • School of Electrical, Computer and Telecommunications Engineering, University of Wollongong Wollongong, NSW 2522, Australia,
  • ALLEYNE, A. and HEDRICK, J.K. (1995) Nonlinear adaptive control of active suspensions. IEEE Transactions on Control Systems Technology, 3(1), 94-101.
  • ALLEYNE, A. and LIU, R. (1999) On the limitations offeree tracking control for hydraulic servosystems. Journal of Dynamic Systems, Measurement, and Control, 121(2), 184-190.
  • ALLEYNE, A. and LIU, R. (2000a) A simplified approach to force control for electro-hydraulic systems. Control Engineering Practice, 8(12), 1347-1356.
  • ALLEYNE, A. and LIU, R. (2000b) Systematic control of a class of nonlinear systems with application to electrohydraulic cylinder pressure control. IEEE Transactions on Control Systems Technology, 8(4), 623-634.
  • ALLEYNE, A., NEUHAUS, P.D. and HEDRICK, J.K. (1993) Application of nonlinear control theory to electronically controlled suspensions. Vehicle System Dynamics, 22(5), 309-320.
  • BOYD, S., EL GHAOUI, L., FERON, E. and BALAKRISHNAN, V. (1994) Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, PA.
  • CAO, Y.Y. and LIN, Z. (2003) Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation. IEEE Trans-actions on Fuzzy Systems, 11(1), 57-67.
  • CHANTRANUWATHANA, S. and PENG, H. (2004) Adaptive robust force con¬trol for vehicle active suspensions. International Journal of Adaptive Control and Signal Processing, 18(2), 83-102.
  • CHEN, P.C. and HUANG, A.C. (2006) Adaptive sliding control of active suspension systems with uncertain hydraulic actuator dynamics. Vehicle System Dynamics, 44(5), 357-368.
  • FENG, G. (2006) A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems, 14(5), 676-697.
  • HROVAT, D. (1997) Survey of advanced suspension developments and related optimal control applications. Automatica, 33(10), 1781-1817.
  • HUANG, S.J. and CHEN, H.Y. (2006) Adaptive sliding controller with self-tuning fuzzy compensation for vehicles suspension control. Mechatronics, 16, 607-622.
  • KADDISSI, C., KENNE, J.P. and SAAD, M. (2007) Identification and real-time control of an electrohydraulic servo system based on nonlinear back-stepping. IEEE/ASME Transactions on Mechatronics, 12(1), 12-22.
  • MARTINS, I., ESTEVES, J., MARQUES, G.D. and PINA DA SILVA, F. (2006) Permanent-magnets linear actuators applicability in automobile active sus-pensions. IEEE Transactions on Vehicular Technology, 55(1), 86-94.
  • TANAKA, K. and WANG, H.O. (2001) Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley & Sons, Inc., New York.
  • THOMPSON, A.G. and DAVIS, B.R. (2001) Force control in electrohydraulic active suspensions revisited. Vehicle System Dynamics, 35(3), 217-222.
  • TSENG, C.S., CHEN, B.S. and UANG, H.J. (2001) Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model. IEEE Transactions on Fuzzy Systems, 9(3), 381-392.
  • TUAN, H.D., ONO, E., APKARIAN, P. and HOSOE, S. (2001) Nonlinear H∞ control for an integrated suspension system via parameterized linear matrix inequality characterizations. IEEE Transactions on Control Systems Technology, 9(1), 175-185.
  • WILLIAMS, R.A. (1997) Automotive active suspensions. Proc. Instn. Mech. Engrs. Part D: J. Automobile Engineering, 211(6), 415-444.
  • ZHANG, Y. and ALLEYNE, A. (2006) A practical and effective approach to active suspension control. Vehicle System Dynamics, 43(5), 305-330.
  • ZHOU, K. and KHARGONEKAR, P.P. (1988) An algebraic Riccati equation approach to H∞ optimization. Systems & Control Letters, 11, 85-91.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.