Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved fuzzy feedback linearization and Sinswat-transformation control of inverted pendulum

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper studies the output tracking and almost disturbance decoupling problem of nonlinear control systems with uncertainties via fuzzy logic control and feedback linearization approach. The main contribution of this study is to construct a controller, under appropriate conditions, such that the resulting closed-loop system enjoys for any initial condition and bounded tracking signal the following characteristics: input-to-state stability with respect to disturbance inputs and almost disturbance decoupling, i.e., the influence of disturbances on the L2 norm of the output tracking error can be arbitrarily attenuated by increasing some adjustable parameters. The underlying theoretical approaches are the differential geometry approach and the composite Lyapunov approach. One example, which cannot be solved by the approach from the first paper (Marino et al., 1989) on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the almost disturbance decoupling and the convergence rate performances are easily achieved by virtue of our approach. In order to demonstrate the practical applicability, the paper takes up the study of an inverted pendulum control system.
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
  • Department of Electronic Engineering, Wufeng Institute of Technology, 117, Sec., Chian-Kuo Road, Ming-Hsiung, Chiayi 621, Taiwan 640, R.O.C.
  • ALLEYNE, A. (1998) A systematic approach to the control of electrohydraulic servosystems. Proceedings of the American Control Conference, Philadelphia, Pennsylvania, June, 833-837.
  • BANKS, S.P. (1988) Mathematical Theories of Nonlinear Systems. Prentice-Hall, Englewood Cliffs.
  • BEDROSSIAN, N.S. (1992) Approximate feedback linearization: the car-pole example. Proceedings of the 1992 IEEE International Conference on Robotics and Automation, France, Nice, May, 1987-1992.
  • CORLESS, M.J. and LEITMANN, G. (1981) Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Automat. Contr. 26 (5), 1139-1144.
  • ELGHEZAWI, M.E., ZINOBER, A.S.I, and BILLINGS, S.A. (1983) Analysis and design of variable structure systems using a geometric approach. International Journal of Control 38 (3), 657-671.
  • FLOARES, A. (2005) Feedback linearization using neural networks applied to advanced pharmacodynamic and pharmacogenomic systems. IEEE International Joint Conference on Neural Networks 1, July, 173-178.
  • FLOARES, A.G. (2006) Computation Intelligence tools for modeling and controlling pharmacogenomic systems: Genetic programming and neural networks. Proc. Int. Joint Conference on Neural Networks, Canada, July 16-21, 3820-3827.
  • GUO, P. (2006) Nonlinear Predictive Functional Control Based on Hopfield Network and its Application in CSTR. Proc. International Conference on Machine Learning and Cybernetics, Dalian, August 13-16, 3036-3039.
  • HAHN, H., ZHANG, X., LEIMBACH, K.D. and SOMMER H.J. (1992) Nonlinear control of a planar multi-axis servo-hydraulic test-facility. Proc. of the 2nd IFAC Workshop on System Structure and Control, Prague, 208-211.
  • HAHN, H., ZHANG, X., LEIMBACH, K.D. and SOMMER, H.J. (1994) Nonlinear control of a planar multiaxis servohydraulic test facility using exact linearization techniques. Kybernetika 30 (5), 477-488.
  • HENSON, M.A. and SEBORG, D.E. (1991) Critique of exact linearization strategies for process control. J. Process Control 1, 122-139.
  • ISIDORl, A. (1989) Nonlinear Control Systems. Springer Verlag, New York.
  • JOO, S.J. and SEO, J.H. (1997) Design and analysis of the nonlinear feedback linearizing control for an electromagnetic suspension system. IEEE Trans. Automat. Contr. 5 (1), 135-144.
  • KAWAMOTO, S., TADA, K., ISHIGAME, A. and TANIGUCHI, T. (1992) An approach to stability analysis of second order fuzzy systems. The IEEE International Conference on Fuzzy Systems, 1427-1434.
  • KHALIL, H.K. (1996) Nonlinear Systems. Prentice-Hall, New Jersey.
  • KHORASANI, K. and KOKOTOVIC, P.V. (1986) A corrective feedback design for nonlinear systems with fast actuators. IEEE Trans. Automat. Contr. 31, 67-69.
  • LAM, H.K., LEUNG, F.H.F. and TAM, P.K.S. (2002) Fuzzy state feedback controller for nonlinear systems: Stability analysis and design. The IEEE International Conference on Fuzzy Systems, 2, 677-681.
  • LEE, S.Y., LEE, J.I. and HA, I.J. (1997) A new approach to nonlinear autopilot design for bank-to-turn missiles. Proceedings of the 36th Conference on Decision and Control, San Diego, California, December, 4192-4197.
  • MAMDANI, E.H. and ASSILIAN, S. (1975) An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7 (I), 1-13.
  • MARINO, R. and KOKOTOVIC, P.V. (1988) A geometric approach to nonlinear singularly perturbed systems. Automatica 24, 31-41.
  • MARINO, R., RESPONDEK, W. and VAN DER SCHAFT, A.J. (1989) Almost disturbance decoupling for single-input single-output nonlinear systems. IEEE Trans. Automat. Contr. 34 (9), 1013-1017.
  • MARINO, R. and TOMEI, P. (1999) Nonlinear output feedback tracking with almost disturbance decoupling. IEEE Trans. Automat. Contr. 44 (1), 18-28.
  • MENDEL, J. (2001) Uncertain Rule-based Fuzzy Inference Systems: Introduction and New Directions. Prentice-Hall.
  • MILLER, R.K. and MICHEL, A.N. (1982) Ordinary Differential Equations. A-cademic Press, New York.
  • NIJMEIJER, H. and VAN DER SCHAFT, A.J. (1990) Nonlinear Dynamical Control Systems. Springer Verlag, New York.
  • QIAN, C. and LIN, W. (2000) Almost disturbance decoupling for a class of high-order nonlinear systems. IEEE Trans. Automat. Contr. 45 (6), 1208-1214.
  • SHEEN, J.J. and BISHOP, R.H. (1998) Adaptive nonlinear control of spacecraft. Proceedings of the American Control Conference, Baltimore. Maryland, June, 2867-2871.
  • SINSWAT, V. and FALLSIDE, F. (1977) Eigenvalue/eigenvector assignment by state feedback. International Journal of Control 26 (3), 389-403.
  • SLOTINE, J.J.E.and LI, W. (1991) Applied Nonlinear Control. Prentice-Hall, New York.
  • TAKAGI, T. and SUGENO, M. (1985) Fuzzy identification of systems and its applications to modelling and control. IEEE Trans, on Systems, Man and Cybernetics 15, 116-132.
  • TANAKA, K., HORI T. and WANG, H.O. (2003) A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Transactions on Fuzzy Systems 11 (4), 582-589.
  • TANAKA, K. and SUGENO, M. (1990) Stability analysis of fuzzy control systems using Lyapunov’s direct method. Proc. of NAFIPS’90, 133-136.
  • TANAKA, K. and SUGENO, M. (1992) Stability analysis and design of fuzzy control systems. Fuzzy Sets and Systems 45 (2), 135-156.
  • WANG, H.O., TANAKA, K. and GRIFFIN, M.F. (1996) An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Trans, on Fuzzy System 4, 14-23.
  • WEILAND, S. and WILLEMS, J.C. (1989) Almost disturbance decoupling with internal stability. IEEE Trans. Automat. Contr. 34 (3), 277-286.
  • WILLEMS, J.C. (1981) Almost invariant subspace: An approach to high gain feedback design. Part I: Almost controlled invariant subspaces. IEEE Trans. Automat. Contr. AC-26 (1), 235-252.
  • YAGER, R.R. and FILEV, D.P. (1994) Essentials of Fuzzy Modeling and Control. Wiley, New York.
  • YANG, B.J. and CALISE, A.J. (2007) Adaptive Control of a Class of Nonaffine Systems Using Neural Networks. IEEE Transaction on Neural Networks 18 (4), 1149-1159.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.