Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Guaranteed control policy with arbitrary set of correction points for linear-quadratic system with delay

Treść / Zawartość
Warianty tytułu
Języki publikacji
For continuous, uncertain, linear quadratic control system with delayed input, we consider a min-max control policy in which the elements of feedback are present. The feedback is introduced into control optimization by allowing a control to be corrected at a given set of correction points from the control interval. This helps to overcome the feasibility difficulties that arise with standard min-max techniques. We show that construction of the optimal policy involves a sequence of min-max optimizations formulated as dynamic programs that do not yield simple analytical solutions. That is why the paper is mainly focused on construction and justification of suboptimal control policy that can be effectively implemented. Simulated examples demonstrate the proposed approach.
Opis fizyczny
Bibliogr. 21 poz., wykr.
  • BASIN, M. and RODRIGEZ-GONZALEZ, J. (2005) A closed-form optimal control for linear system with equal state and input delays. Computers & Structures 41(5), 915-920.
  • BELLMAN, R. (1961) Adaptive Control Processes - A Guided Tour. Princeton University Press.
  • BEMPORAD, A., BORRELLI, F. and MORARI, M. (2003) Min-Max control of constrained uncertain discrete-time linear systems. IEEE Transactions on Automatic Control 48(9), 1600-1606.
  • BOUKAS, E. and AL-MUTHAIRI, N.F. (2006) Delay-dependent stabilization of singular linear systems with delay. International Journal of Innovative Computing Information and Control 2(2), 283-291.
  • KERRIGAN, E. and MACIEJOWSKI, J.M. (2004) Feedback min-max model predictive control using a single linear program: Robust stability and explicit solution. Int. J. of Robust and Nonlinear Control 14, 395-413.
  • KIM, J.H. (2000) Guaranteed cost control of parameter uncertain systems with time delay. Transaction on Control, Automation, and Systems Engineering 2 (1), 19-23.
  • KOTHARE, M.V., BALAKRISHNAN, V. and MORARI, M. (1996) Robust con-strained model predictive control using linear matrix inequalities. Automatica 32(10), 1361-1379.
  • KOSTINA, E.A. and KOSTYUKOVA, O.I. (2006) Robust optimal feedback for terminal linear-quadratic control problems under disturbances. Mathematical Programming, Ser. B 107, 131-153.
  • LANGSON, W., CHRYSSOCHOOS, I., RAKOVIC, S.V. and MAYNE, D.Q. (2004) Robust model predictive control using tubes. Automatica 40, 125-133.
  • LEE, J.H. and YU, Z. (1997) Worst-case formulation of model predictive control for systems with bounded parameters. Automatica 33(5), 763-781.
  • MAGNI, L., DE NICOLAO, G., SCATTOLINI, R. and ALLGOWER, F. (2002) Robust receding horizon control for non-linear discrete-time system. In: Proceedings of the 15th IF AC World Congress, Spain.
  • MAGNUS, J.R. and NEUDECKER, H. (1988) Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley and Sons.
  • MAHMOUD, M.S. (2000) Robust Control and Filtering for Time-Delay Systems. Marcel Dekker.
  • MATVEEV, A.S. and YAKUBOVICH, V.A. (1998) Nonconvex global optimization in optimal control theory. Itogi nauki i tekhniki, Seriya Sovremennaya matematika i ee prilozheniya 60, 128-175.
  • PONTRYAGIN, L.S., BOLTYANSKIJ, V.G., GAMKRELIDZE, R.V. and MISHCHENKO, E.F. (1986) Selected Works, Vol. 4, The Mathematical Theory of Optimal Processes. Gamkrelidze, R.V. (ed.) Classics of Soviet Mathematics, Gordon and Breach Science Publishers, New York. (Translation from Russian edition, Nauka, Moscow, 1961).
  • RICHARD, J.-P. (2003) Time-delay systems: an overview of some recent advances and open problems. Automatica 39, 1667-1694.
  • SAVKIN, A., SKAFIDAS, E. and EVANS, R. (1999) Robust output feedback stabilizability via controller switching. Automatica 35, 69-74.
  • SCOKAERT, P.M and MAYNE, D.Q. (1998) Min-max feedback model predictive control for constrained linear systems. IEEE Transactions on Automatic Control 43 (8), 1136-1142.
  • SHI, P. BOUKAS, E., SHI, Y. and AGARWAL, R.K. (2003) Optimal guaranteed cost control of uncertain discrete time-delay systems. Journal of Computational and Applied Mathematics 157, 435-451.
  • VANDERBERGHE, L., BOYD, S. and NOURALISHAHI, M. (2002) Robust linear programming and optimal control. In: Proceedings of the 15th IFAC World Congress on Automatic Control, Spain.
  • YU, L. and GAO, F. (2001) Optimal guaranteed cost control of discrete-time uncertain systems with both state and input delays. Journal of the Franklin Institute 338, 101-110.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.