Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of space-time material layout for ID wave propagation with varying mass and stiffness parameters

Treść / Zawartość
Warianty tytułu
Języki publikacji
Results are presented for optimal layout of materials in the spatial and temporal domains for a ID structure subjected to transient wave propagation. A general optimization procedure is outlined including derivation of design sensitivities for the case when the mass density and stiffness vary in time. The outlined optimization procedure is exemplified on a ID wave propagation problem in which a single gaussian pulse is compressed when propagating through the optimized structure. Special emphasis is put on the use of a time-discontinuous Galerkin integration scheme that facilitates analysis of a system with a time-varying mass matrix.
Opis fizyczny
Bibliogr. 27 poz., wykr.
  • Department of Mechanical Engineering, Solid Mechanics Technical University of Denmark Nils Koppels Alle, Building 404, Denmark,
  • ARORA, J.S. and HOLTZ, D. (1997) An efficient implementation of adjoint sensitivity analysis for optimal control problems. Structural Optimization 13, 223-229.
  • BENDSOE, M.P. (1989) Optimal shape design as a material distribution method. Structural Optimization 10, 193-202.
  • BENDSOE, M.P. and KIKUCHI, N. (1988) Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering 71 (2), 197-224.
  • BENDSOE, M.P. and SIGMUND, O. (2003) Topology Optimization - Theory, Methods and Applications. Springer-Verlag, Berlin Heidelberg New York.
  • BLEKHMAN, I.I. (2008) Vibrational dynamic materials and composites. Journal of Sound and Vibration 317, 657-663.
  • BLEKHMAN, I.I. and LURIE, K.A. (2000) On dynamic materials. Proceedings of the Russian Academy of Sciences (Doklady) 37, 182-185.
  • BORRVALL, T. and PETERSSON, J. (2001) Topology optimization using regularized intermediate density control. Computer Methods in Applied Mechanics and Engineering 190, 4911-4928.
  • BORRVALL, T. and PETERSSON, J. (2003) Topology optimization of fluids in Stokes flow. International Journal for Numerical Methods in Fluids 41, 77-107.
  • COX, S.J. and DOBSON, D.C. (1999) Maximizing band gaps in two-dimensional photonic crystals. SIAM Journal for Applied Mathematics 59 (6), 2108-2120.
  • DAHL, J., JENSEN, J.S. and SIGMUND, O. (2008) Topology optimization for transient wave propagation problems in one dimension. Structural and Multidisciplinary Optimization 36, 585-595.
  • JENSEN, J.S. (2008) Time-space topology optimization. In: B.H.V. Topping and M. Papadrakakis, eds., Proceedings of the Ninth International Conference on Computational Structures Technology. Civil-Comp Press, Stirlingshire, United Kingdom. Paper 72.
  • JENSEN, J.S. (2009) Space-time topology optimization for one-dimensional wave propagation. Computer Methods in Applied Mechanics and Engineering 198, 705-715.
  • KRYLOV, V. and SOROKIN, S.V. (1997) Dynamics of elastic beams with controlled distributed stiffness parameters. Smart Materials and Structures 6, 573-582.
  • LURIE, K.A. (1997) Effective properties of smart elastic laminates and the screening phenomenon. International Journal of Solids and Structures 34, 1633-1643.
  • LURIE, K.A. (2006) An Introduction to Mathematical Theory of Dynamic Materials. Springer-Verlag, Berlin Heidelberg New York.
  • MAESTRE, F., MÜNCH, A. and PEDREGAL, P. (2007) A spatio-temporal design problem for a damped wave equation. SIAM Journal of Applied Mathematics 68, 109-132.
  • MAESTRE, F. and PEDREGAL, P. (2009) Dynamic materials for an optimal design problem under the two-dimensional wave equation. Discrete and Continuous Dynamical Systems - Series A 23, 973-990.
  • MIN, S., KIKUCHI, N., PARK, Y.C., KIM, S. and CHANG, S. (1999) Optimal topology design of structures under dynamic loads. Structural Optimization 17, 208-218.
  • SIGMUND, O. and JENSEN, J.S. (2003) Systematic design of phononic band-gap materials and structures by topology optimization. Philosophical Transactions of the Royal Society London, Series A (Mathematical, Physical and Engineering Sciences) 361, 1001-1019.
  • SIGMUND, O. and PETERSSON, J. (1998) Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization 16, 68-75.
  • SOROKIN, S.V., ERSHOVA, O.A. and GRISHINA, S.V. (2000) The active control of vibrations of composite beams by parametric stiffness modulation. European Journal of Mechanics A - Solids 19, 873-890.
  • SOROKIN, S.V. and GRISHINA, S.V. (2004) Analysis of wave propagation in sandwich beams with parametric stiffness modulation. Journal of Sound and Vibration 271, 1063-1082.
  • SVANBERG, K. (1987) The method of moving asymptotes - a new method for structural optimization. International Journal for Numerical Methods in Engineering 24, 359-373.
  • TORTORELLI, D.A. and MICHALERIS, P. (1994) Design sensitivity analysis: overview and review. Inverse Problems in Engineering 1, 71-105.
  • TURTELTAUB, S. (2005) Optimal non-homogeneous composites for dynamic loading. Structural and Multidisciplinary Optimization 30, 101-112.
  • WIBERG, N.E. and Li, X.D. (1999) Adaptive finite element procedures for linear and non-linear dynamics. International Journal for Numerical Methods in Engineering 46, 1781-1802.
  • YOON, G.H., JENSEN, J.S. and SIGMUND, O. (2007) Topology optimization of acoustic-structure interaction using mixed finite elements. International Journal for Numerical Methods in Engineering 70, 1049-1075.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.