Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Algorithm for generalization of action rules to summaries

Treść / Zawartość
Warianty tytułu
Języki publikacji
A knowledge discovery system is prone to yielding plenty of patterns, presented in the form of rules. Sifting through to identify useful and interesting patterns is a tedious and time consuming process. An important measure of interestingness is: whether or not the pattern can be used in the decision making process of a business to increase profit. Hence, actionable patterns, such as action rules, are desirable. Action rules may suggest actions to be taken based on the discovered knowledge. In this way contributing to business strategies and scientific research. The large amounts of knowledge in the form of rules presents a challenge of identifying the essence, the most important part, of high usability. We focus on decreasing the space of action rules through generalization. In this paper, we propose an improved method for discovering short descriptions of action rules. The new algorithm produces summaries by maximizing the diversity of rule pairs, and minimizing the cost of the suggested actions.
Opis fizyczny
Bibliogr. 15 poz., rys.
  • DARDZINSKA, A., and HAS, Z.W. (2006) Cooperative discovery of interesting action rules. In: H.L. Larsen, G. Pasi, D.O. Arroyo, T. Andreasen, H. Christiansen, eds., Flexible Query Answering Systems, 7th International Conference, FQAS 2006, Milan, Italy, June 7-10, 2006. LNCS 4027, Springer, 489-497.
  • GENG, L. and HAMILTON, H.J. (2006) Interestingness measures for data mining: a survey. ACM Computing Surveys 38 (3).
  • HE, Z., Xu, X., DENG, S. and MA, R. (2005) Mining action rules from scratch. Expert Systems with Applications 29 (3), 691-699.
  • HILDERMAN, R.J. and HAMILTON, H.J. (2001) Knowledge Discovery and Measures of Interest. Kluwer Academic.
  • JIANG, Y., WANG, K., TUZHILIN, A. and FU, A.W.-C. (2005) Mining patterns that respond to actions. In: Proceedings of the 5th IEEE International Conference on Data Mining (ICDM 2005), 27-30 November 2005, Houston, Texas, USA. IEEE Computer Society, 669-672.
  • RAS,Z. and WIECZORKOWSKA, A. (2000) Action Rules: how to increase profit of a company. In: D.A. Zighed, J. Komorowski, J. Zytkow, eds., Principles of Data Mining and Knowledge Discovery. LNAI 1910, Springer, 587-592.
  • RAS, Z., WYRZYKOWSKA, E. and WASYLUK, H. (2007) ARAS: Action Rules discovery based on Agglomerative Strategy. In: Post-Proceedings of 2007 ECML/PKDD Third International Workshop (MCD 2007), LNAI 4944, Springer, 196-208.
  • TSAY, L.-S. and RAS, Z.W. (2005) Action rules discovery system DEAR, method and experiments. Journal of Experimental and Theoretical Artificial Intelligence, Taylor and Francis, 17 (1-2), 119-128.
  • TZACHEVA, A.A. (2008) Diversity of Summaries for Interesting Action Rule Discovery. In: Proceedings of 16th International Conference on Intelligent Information Systems. Springer-Verlag, 181-290.
  • TZACHEVA, A.A. and RAS, Z.W. (2005) Action rules mining. International Journal Of Intelligent Systems 20 (6), 719-736.
  • TZACHEVA, A.A. and RAS, Z.W. (2007) Constraint Based Action Rule Discovery with Single Classification Rules. In: Proceedings of the Joint Rough Sets Symposium (JRS07), May 14-16, 2007, in Toronto, Canada. LNAI 4482, Springer, 322-329.
  • WANG, K., ZHOU, S. and HAN, J. (2002) Profit Mining: From Patterns to Actions. In: C.S. Jensen et al., eds., Proceedings of the 8th International Conference on Extending Database Technology: Advances in Database Technology. Springer-Verlag, 70-87.
  • WANG, K., YANG, J. and MUNTZ, R. (1997) STING: A statistical information grid approach to spatial data mining. In: Proceedings of 23rd International Conference on Very Large Data Bases (VLDB’97). Morgan Kaufmann Publishers. 186-195.
  • YANG, Q. and CHENG, H. (2002) Mining case bases for action recommendation. In: ICDM ‘02: Proceedings of the 2002 IEEE International Conference on Data Mining. IEEE Computer Society, 522.
  • YANG,Q., YIN, J., LIN,C. and CHEN,T. (2003) Postprocessing decision trees to extract actionable knowledge. In: ICDM ‘03: Proceedings of the Third IEEE International Conference on Data Mining. IEEE Computer Society, 685.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.