Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-swarm that learns

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper studies particle swarm optimization approach enriched by two versions of an extension aimed at gathering information during the optimization process. Application of these extensions, called memory mechanisms, increases computational cost, but it is spent to a benefit by incorporating the knowledge about the problem into the algorithm and this way improving its search abilities. The first mechanism is based on the idea of storing explicit solutions while the second one applies one-pass clustering algorithm to build clusters containing search experiences. The main disadvantage of the former mechanism is lack of good rules for identification of outdated solutions among the remembered ones and as a consequence unlimited growth of the memory structures as the optimization process goes. The latter mechanism uses other form of knowledge representation and thus allows us to control the amount of allocated resources more efficiently than the former one. Both mechanisms have been experimentally verified and their advantages and disadvantages in application for different types of optimized environments are discussed.
Opis fizyczny
Bibliogr. 22 poz., wykr.
  • Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
  • AGGARWAL, C.C., HAN, J., WANG, J. and Yu, P.S. (2003) A Framework for Clustering Evolving Data Streams. In: VLDB 2003: Proc. of 29th Int. Conf. on Very Large Data Bases, September 9-12, 2003, Berlin, Germany, Morgan Kaufmann Publishers, 81-92.
  • BLACKWELL, T. and BRANKE, J. (2004) Multi-swarm Optimization in Dynamic Environments. In: Applications of Evolutionary Computing, Evo Workshops 2004. LNCS 3005, Springer, 489-500.
  • BLACKWELL, T. and BRANKE, J. (2006) Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Trans. Evol. Comput., 10(4), 459-472.
  • BRANKE, J. (1999) Memory enhanced evolutionary algorithms for changing optimization problems. In: Congress on Evolutionary Computation. 3, IEEE Press, 1875-1882.
  • BRANKE, J. (2002) Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers.
  • CHAMBERS, J.M., MALLOWS, C.L. and STUCK, B.W. (1976) A Method for Simulating Stable Random Variables. J. Amer. Statist. Assoc. 71 (354), 340-344.
  • CLERC, M. and KENNEDY, J. (2002) The particle swarm-explosion, stability, and convergence in a multi-dimensional complex space. IEEE Trans. Evol. Comput. 6 (1), 58-73.
  • KENNEDY, J. and EBERHART, R.C. (1995) Particle Swarm Optimization. In: Proc. IEEE Int. Conf. on Neural Networks (ICNN’95), 4, IEEE Service Center, 1942-1948.
  • LI, X. (2004) Adaptively choosing neighborhood bests in a particle swarm optimizer for multimodal function optimization. In: GECCO 2004: Conf. on Genetic and Evolutionary Computation, LNCS 3102, Springer, 105-116.
  • LI, X., BRANKE, J. and BLACKWELL, T. (2006) Particle swarm with speciation and adaptation in a dynamic environment. In: GECCO 2006: Conf. on Genetic and Evolutionary Computation. ACM Press, 51-58.
  • LU, H. and CHEN, W. (2006) Dynamic-objective particle swarm optimization for constrained optimization problems. J. Comb. Optim. 12 (4), 409-419.
  • MORI, N., IMANISHI, S., KITA, H. and NISHIKAWA, Y. (1997) Adaptation to changing environments by means of the memory based thermodynamical genetic algorithm. In: 7th Int. Conf, on Genetic Algorithms. Morgan Kaufman, 299-306.
  • MUÑOZ ZAVALA, A.E., AGUIRRE, A.H. and VILLA DIHARCE, E.R. (2005) Constrained optimization via particle evolutionary swarm optimization algorithm (PESO). In: H.-G. BEYER et al., eds., GECCO 2005: Proc. Conf. on Genetic and Evolutionary Computation, 1, ACM Press, 209-216.
  • PAQUET, U. and ENGELBRECHT, A.P. (2007) Particle Swarms for Linearly Constrained Optimisation. Fund. Inform., 76(1-2), 147-170.
  • PARROT, D. and LI, X. (2006) Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans. Evol. Cornput. 10 (4), 440-458.
  • PULIDO, G.T. and COELLO, C.A. (2004) A Constraint Handling Mechanism for Particle Swarm Optimization. In: Proc. Congress on Evolutionary Computation, 2, IEEE, 1396-1403.
  • TROJANOWSKI, K. (2009) Properties of Quantum Particles in Multi-Swarms for Dynamic Optimization. Fund. Inform. 95 (2-3), 349-380.
  • TROJANOWSKI, K. and MICHALEWICZ, Z. (1999) Searching for Optima in Non-Stationary Environments. In: Congress on Evolutionary Computation, 3, IEEE Press, 1843-1850.
  • TROJANOWSKI, K., MICHALEWICZ, Z. and XIAO, J. (1997) Adding Memory to the Evolutionary Planner Navigator. In: 4th IEEE Int. Congress on Evolutionary Computation. IEEE Publishing, 483-487.
  • TROJANOWSKI, K. and WIERZCHOŃ, S.T. (2002a) Control of Immune Memory in Artificial Immune System. In: WAE 2002: 3rd Nat. Workshop on Evolutionary Computation and Global Optimisation. Warsaw Univ. of Technology Publishing House, 111-118.
  • TROJANOWSKI, K. and WIERZCHOŃ, S.T. (2002b) Memory Management in Artificial Immune System. In: 6th Int. Conf. on Neural Networks and Soft Computing ICNNSC 2002. Adv. in Soft Computing, 19, Physica/Springer, 650-655.
  • TROJANOWSKI, K. and WIERZCHOŃ, S.T. (2002c) Searching for Memory in Artificial Immune System. In: IIS 2002: 11th Int. Symposium on Intelligent Information Systems. Adv. in Soft Computing, 17, Physica/Springer, 175-183.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.