Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intelligence in manufacturing systems: the pattern recognition perspective

Treść / Zawartość
Warianty tytułu
Języki publikacji
The field of Intelligent Manufacturing Systems (IMS) has been generally equated with the use of Artificial Intelligence and Computational Intelligence methods and techniques in the design and operation of manufacturing systems. Those methods and techniques are now applied in many different technological domains to deal with such pervasive problems as data imprecision and nonlinear system behavior. The focus in IMS is now shifting to a broader understanding of the intelligent behavior of manufacturing systems. The questions debated by researchers today relate more to what kind and what level of adaptability to instill in the structure and operation of a manufacturing system, with the discussions increasingly gravitating to the issue of system self-organization. This paper explores the changing face of IMS from the perspective of the pattern recognition domain. It presents design criteria for techniques that will allow us to implement manufacturing systems exhibiting adaptive and intelligent behaviour. Examples are given to show how incorporating pattern recognition capabilities can help us build more intelligence and self-organization into the manufacturing systems of the future.
Opis fizyczny
Bibliogr. 57 poz., rys.
  • Departement d'informatique et d'ingenierie, Universite du Quebec (UQO), Gatineau, QC J8Y 3G5 Canada,
  • ABE, S. (2005) Support Vector Machines for Pattern Classification. Springer-Verlag, London.
  • AIZERMAN, M.A., BRAVERMAN, E.M. and ROZONOER, L.I. (1964) The probability problem of pattern recognition learning and the method of potential functions. Automation and Remote Control 25, 1175-1190.
  • ALT, H., MEHLHORN, H., WEGENER, H. and WELZL, E. (1988) Congruence, similarity and symmetries of geometric objects. Discrete Comput. Geometry 3, 237-256.
  • BALIC, J., KOVACIC, M. and VAUPOTIC, B. (2006) Intelligent programming of CNC turning operations using genetic algorithm. J. Intelligent Manuf. 17, 331-340.
  • BERGSTRA, J.A., PONSE, A. and SMOLKA, S.A., EDS. (2001) Handbook of Process Algebra. North-Holland, Amsterdam.
  • BEZDEK, J.C, KELLER, J., KRISNAPURAM, R. and PAL, N.R. (1999) Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer Academic Publishers, Norwell, MA.
  • BHANU, B. and LIN, Y. (2003) Genetic algorithm based feature selection for target detection in SAR images. Image and Vision Computing 21 (7), 591-608.
  • BHATT, R.B. and GOPAL, M. (2005) On fuzzy-rough sets approach to feature selection. Pattern Recognition Letters 26 (7), 965-975.
  • BISHOP, C.M. (2006) Pattern Recognition and Machine Learning. Springer Science, Singapore.
  • CHANG, P.C., CHEN, L.Y. and FAN. C.Y. (2008) A case-based evolutionary model for defect classification of printed circuit board images. J. Intelligent Manufacturing 19 (2), 203-214.
  • CHEN, C.H. (1999) Pattern recognition in non-destructive evaluation of materials. In: Handbook of Pattern Recognition & Computer Vision. World Scientific, Hackensack, NJ, 455-472.
  • CHUMAKOV, R. (2008) An artificial neural network for fault detection in the assembly of thread-forming screws. J. Intelligent Manufacturing 19(3), 327-333.
  • CHO, K.J. and PARK, C.C. (2005) Implementation of the KNGR class library based on the GPM and semantic networks for co-design. Computer-Aided Design & Applications 2 (1-4), 165-172.
  • COOLEY, W.W. and LOHNES, P.R. (1971) Multivariate Data Analysis. John Wiley & Sons, Inc., New York.
  • DEB, S., GHOSH, K. and PAUL, S. (2006) A neural network based methodology for machining operations selection in Computer-Aided Process Planning for rotationally symmetrical parts. J. Intelligent Manufacturing 17 (b), 557-569.
  • DEVEDZIC, V. and RADOVIC, D. (1999) A framework for building Intelligent Manufacturing Systems. IEEE Trans. Systems, Man, and Cybernetics -Part C 29 (3), 422-439.
  • DING, Y., CEGLAREK, D. and SHI, J. (2002) Fault Diagnosis of Multistage Manufacturing Processes by Using State Space Approach. J. of Manufacturing Science and Engineering 124 (2), 313-322.
  • EVANGELISTA, P.P., EMBRECHTS, M.J. and SZYMANSKI, B.K. (2006) Taming the curse of dimensionality in kernels and novelty detection. In: A. Abraham et al., eds., Applied Soft Computing Technologies: The Challenge of Complexity. Springer Verlag, Berlin.
  • FREUND, Y. and SCHAPIRE, R.E. (1997) A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55 (1), 119-139.
  • FRIEDMAN, J.H. (2001) Greedy function approximation: A gradient boosting machine. Annals of Statistics. 29 (5), 1189-1232.
  • HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001) The Elements of Statistical Learning. Springer-Verlag, New York.
  • HU, M., CHEN, Y. and KWOK, J.T.Y. (2009) Building sparse multiple-kernel SVM classifiers. IEEE Trans, on Neural Networks 20 (5), 827-839.
  • HUGHES, G.F. (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans, on Information Theory 14 (1), 55-63.
  • JÄHNE, B. (2002) Digital Image Processing. Springer-Verlag, Berlin.
  • JACK, L.B. and NANDI, A.K. (2002) Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms. Mechanical Systems and Signal Processing, 16 (2-3), 373-390.
  • KOHONEN, T., OJA, E., SIMULA, O., VISA, A. and KANGAS, J. (1996) Engineering applications of the self-organizing map. Proc. of the IEEE, 84, 1358-1384.
  • KUNCHEVA, L.I. (2004) Combining Pattern Classifiers. John Wiley & Sons, Hoboken, NJ.
  • KUSIAK, A. and SMITH M. (2007) Data mining in design of products and production systems. IF AC Annual Reviews in Control 31 (1), 147-156.
  • LIU, H. and YU, L. (2005) Towards integrating feature selection algorithms for classification and clustering. IEEE Trans, on Knowledge and Data Engineering 17 (4), 491-502.
  • MARKOPOULOS, A.P., MANOLAKOS, D.E. and VAXEVANIDIS, N. (2008) Artificial neural network models for the prediction of surface roughness in electrical discharge machining. J. Intelligent Manufacturing 19 (3), 283-292.
  • NEWELL, A. (1990) Unified Theories of Cognition. Harvard University Press, Cambridge, Massachussets.
  • OH, I.S., LEE, J.S. and MOON, B.R. (2004) Hybrid genetic algorithms for feature selection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (11), 1424-1437.
  • PALENICHKA, R.M., ZAREMBA, M.B. and MISSAOUI, R. (2006) Multi-scale model-based feature extraction in structural texture images. Journal of Electronic Imaging 15 (2), 1-15.
  • PALENICHKA, R.M. and ZAREMBA, M.B. (2007) Multiscale isotropic matched filtering for individual tree detection in LiDAR images. IEEE Trans, on Geoscience and Remote Sensing 45 (12), 3944-3956.
  • PRAKASH, A., TIWARI, M. and SHANKAR, R. (2008) Optimal job sequence determination and operation machine allocation in flexible manufacturing systems: an approach using adaptive hierarchical ant colony algorithm. J. Intelligent Manufacturing 19 (2), 161-173.
  • REPAKA, S.R. and TRUAX, D.D. (2004) Comparing spectral and object based approaches for classification and transportation feature extraction from high resolution multispectral imagery. Proc. ASPRS Annual Conference, Denver, Colorado, May 2004, 11-22.
  • REVESZ, P.Z. (1993) On the semantics of theory change: Arbitration between old and new information. Proc. 12th ACM SIGACT Symp. on Principles of Database Systems, 71-79.
  • ROKACH, L. and MAIMON, O. (2006) Data mining for improving the quality of manufacturing: a feature set decomposition approach. J. Intelligent Manufacturing 17 (3), 285-299.
  • ROWEIS, T. and SAUL, L. (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323-2326.
  • SEKI, H. et al. (2005) Virtual Production Enterprise Network (VIPNET). IMS 0431 Summary Report, IMS Promotion Center, Seoul, Korea.
  • SHAWE-TAYLOR, J. and CRISTIANINI, N. (2004) Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge, UK.
  • SCHÖLKOPF, B. and SMOLA, A.J. (2002) Learning with Kernels. The MIT Press, Cambridge, Mass.
  • STARCK, J.L., MURTAGH, F. and BIJAOUI, A. (1998) Image Processing and Data Analysis: The Multiscale Approach, Cambridge University Press, Cambridge, UK.
  • TAGARE, H.D., TOYAMA, K. arid WANG, J.G. (2001) A maximum-likelihood strategy for directing attention during visual search. IEEE Trans. Pattern Analysis and Machine Intelligence 23 (5), 490-500.
  • TASAN, S.O. and TUNALI, S. (2008) A review of the current applications of genetic algorithms in assembly line balancing. J. Intelligent Manufacturing 19 (1), 49-69.
  • TENENBAUM, J.B., DE SILVA, V. and LANGPORD, J.C. (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319-2323.
  • TSANG, I.W. and KWOK, J.T. (2006) Efficient hyperkernel learning using second-order cone programming. IEEE Trans, on Neural Networks 17 (1), 48-58.
  • VAPNIK, V. (1998) Statistical Learning Theory. John Wiley & Sons, Inc., New York.
  • VERIKAS, A. and BACAUSKIENE, M. (2002) Feature selection with neural networks. Pattern Recognition Letters 23 (11), 1323-1335.
  • WANG, K. (2007) Applying data mining to manufacturing: The nature and implications. J. Intelligent Manufacturing 18 (4), 487-495.
  • WATANABE, S. (1969) Knowing and Guessing: A Quantitative Study of Inference and Information. John Wiley & Sons, New York.
  • WOLPERT, D.H. and MACREADY, W.G. (1995) No free lunch theorems far-search. Technical Report SFI-TR-05-010, Santa Fe Institute. Santa Fe, NM.
  • YOON, T., OOTA, Y., NAKA, Y., YOSHINAGA, T., SHIBAO, K., IGOSHI, M., MATSUSHIMA, K. and SUZUKI, T. (2002) Knowledge fusion among the Virtual Production Enterprises within the Technology Information Infrastructure Environment. Proc. IEEE Engineering Management Conference, Cambridge, UK, 1, 35-40.
  • ZAREMBA, M.B. and FRACZAK, W. (2001) Dynamic task communication for concurrent processing in distributed systems. Concurrent Engineering: Research and Applications 9 (2), 155-165.
  • ZAREMBA, M.B. (2008) Remote sensing applications - New vistas for measurement and control. Journal of Automation, Mobile Robotics & Intelligent Systems 2 (3), 3-12.
  • ZHANG, P., VERMA, B. and KUMAR, K. (2005) Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection. Pattern Recognition Letters 26 (7), 909-919.
  • ZIEN, A. and ONG, C.S. (2007) Multiclass multiple kernel learning. Proc. 24th Int. Conf. Machine Learning. Cornvallis, OR, 1191-1198.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.