Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intelligent prediction of milling strategy using neural networks

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper presents the prediction of milling tool-path strategy using Artificial Neural Network (ANN), by taking the predefined technological objectives into account. In the presented case, the best possible surface quality of a machined surface was taken as the primary technological aim. This paper shows how feature extraction from a 3D CAD model, and classification using a self-organizing neural network, are done. The experimental results presented in this paper suggest that the prediction of milling strategy using the self-organizing neural network (SOM) is effective.
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
  • AZOUZI, R. and GUILLOT, M. (1997) On-line prediction of surface finish and dimensional deviation in turning using neural network based sensor fusion. International Journal of Machine Tools & Manufacture 37, 1201-1217.
  • BALIC, J. and KOROSEC, M. (2002) Intelligent tool path generation for milling of free surfaces using neural networks. International Journal of Machine Tools & Manufacture 42, 1171-1179.
  • BALIC, J. (2004) Intelligent manufactory systems. University of Maribor, Faculty of Mechanical Engineering, Maribor.
  • BALIC, J. (2007) Intelligent CAD/CAM system for CNC programming. An Overview. Advances in Production Engineering & Management 1, 13-21.
  • BALIC, J., KLANCNIK, S. and BREZOVNIK, S. (2008) Feature extraction from CAD model for milling strategy prediction. Journal of Mechanical Engineering 54, 301-307.
  • BENARDOS, P.G. and VOSNIAKOS, G.C. (2002) Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments. Robotics & Computer Integrated Manufacturing 18, 343-354.
  • BERIKOV, V. and LITVINENKO, A. (2003) Methods for Statistical Data Analysis With Decision Trees. Novosibirsk, Sobolev Institute of Mathematics.
  • BOYER, K.L., SRIKANTIAH, R. and FLYNN, P.J. (2002) Salience sequential surface organization for free-form objects recognition. Computer Vision and Image Understanding 88, 3.
  • BUCHMEISTER, B., PAVLINJEK, J., PALCIC, I. and POLAJNAR, A. (2008) Bullwhip effect problem in supply chains. Advances in Production Engineering & Management 3 (1), 45-55.
  • CARPENTER, I.D. and MAROPOULOS, P.G. (2000) Automatic tool selection for milling operations Part 1: cutting data generation. Journal of Engineering Manufacture 214, 271-282.
  • COLAK, O., KURBANOGLU, C. and KAYACAN, M.C. (2005) Milling surface roughness prediction using evolutionary programming methods. Materials and Design 28, 657-666.
  • CRISTIANINI, N. and SHAWE- TAYLOR, J. (2000) An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge.
  • DOMINGOS, P. and PAZZANI, M. (1997) On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29, 103-137.
  • FRADKIN, D., and MUCHNIK, I. (2006) Support Vector Machines for Classification. DIM ACS Series in Discrete Mathematics and Theoretical Computer Science 70, 13-20.
  • FUNKHOUSER, T., MIN, P., KAZHDAN, M., CHEN, J., HALDERMAN, A. and DOBKIN, D. (2003) A search engine for 3D models. A CM Transactions on Graphics 22, 83-105.
  • GUID, N. (2001) Computer Graphics. University of Maribor, Faculty of Electrical Engineering and Computer Science, Maribor.
  • GUID, N. and STRNAD, D. (2007) Artificial intelligence. University of Maribor, Faculty of Electrical Engineering and Computer Science, Maribor.
  • HILAGA, M., SHINAGAWA, Y., KOHMURA, T. and KUNII, T.L. (2001) Topology matching for fully automatic similarity estimation of 3D shapes. Proc. 28th annual conference on computer graphics and interactive techniques. ACM, New York, 203-212.
  • KAZHDAN, M., CHAZELLE, B., DOBKIN, D., FINKELSTEIN, A. and FUNKHOUSER, T. (2002) A reflective symmetry description. Proc. European Conference on Computer Vision (ECCV). Copenhagen, Denmark, 642-656.
  • KAZHDAN, M., CHAZELLE, B., DOBKIN, D., FINKELSTEIN, A. and FUNKHOUSER, T. (2003) A reflective symmetry description for 3D model. Algorithmica, 38, 201-225.
  • KLANCNIK, S., BALIC, J. and PLANINSIC, P. (2007) Obstacle detection with active laser triangulation. Advances in Production Engineering & Management 2, 79-90.
  • KOVACIC, M., BREZOCNIK, M., PAHOLE, I., BALIC, J. and KECELJ, B. (2005) Evolutionary programming of CNC machines. Journal of Materials Processing Technology 164-165, 1379-1387.
  • LEFEBVRE, P. and LAUWERS, B. (2004) STL Model Segmentation for Multi-Axis Machining Operations Planning. Computer-Aided Design and Applications 1, 277-284.
  • LOFFLER, J. (2000) Content-based Retrieval of 3D models in Distributed Web Database by Visual Shape Information. Proc. IEEE International Conference on Information Visualization 2000. London, UK, 82-87.
  • MIN, P., CHEN, J. and FUNKHOUSER, T. (2002) A 2D sketch interface for a 3D model search engine. SIGGRAPH Technical Sketches.
  • MOKHTARIAN, F., KHALILI, N. and YUEN, P. (2001) Multi-scale free-form 3D object recognition using 3D models. Image and Vision Computing, 19, 271-281.
  • NOVOTNI, M. and KLEIN, R. (2001) A geometric approach to 3D object comparison. Proc. Int’l Conf. on Shape Modeling and Applications 2001, Genova, Italy, 167-175.
  • POTOCNIK, B. (2007) Pattern recognition with neural networks. University of Maribor, Faculty of Electrical Engineering and Computer Science, Maribor.
  • QUEK, K.H., YARGER, R.W.I. and KIRBAS, C. (2003) Surface parameterization in volumetric images for curvature-based feature classification. IEEE Trans. SMC, 33, 758-765.
  • RAHIMIC, S. and VISEKRUNA, V. (2007) Optimization of generative CAPP system with minimum cost per piece. Advances in Production Engineering & Management 2 (4), 177-185.
  • RENNER, G. and EKRT, A. (2003) Genetic algorithms in computer aided design. Computer-Aided Design 35, 709-726.
  • SHISHIR BHAT, B.N. (2008) Profits and reduced cycle time with manufacturing cells. Advances in Production Engineering & Management 3 (1), 17-26.
  • TETICKOVIC, A. and KLANCNIK, S. (2005) Voice recognition with feed-forward neural network. In: B. Zajc, A. Trost, eds., Proc. 14th International Electrotechnical and Computer Science Conference ERK’ 05. Portorose, Slovenia, 387-388.
  • TSAI Y.H., CHEN J.C. and LOU S.J. (1999) An in-process surface recognition system based on neural networks in end milling cutting operations. International Journal of Machine Tools & Manufacture 39, 583-605.
  • TYAGI, V. and JAIN, A. (2008) Assessing the effectiveness of flexible process plans for loading and part type selection in FMS. Advances in Production Engineering & Management 3 (1), 27-44.
  • VALENTI, M. (1995) Machine tools get smarter. Mechanical Engineering-CIME 17, 70-75.
  • WATSON, D.F. and PHILIP, G.M. (1984) Triangle based interpolation. Mathematical Geology 8, 779-795.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.