Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sizing of Hall effect thrusters with input power and thrust level: an empirical approach

Warianty tytułu
Języki publikacji
Sizing methods can be used to get a first estimate of the required Hall thruster dimensions and operating conditions for a given input power and a corresponding thrust level. After a review of the existing methods, a new approach, which considers the three characteristic thruster dimensions, i.e. the channel length, the channel width and the channel mean diameter as well as the magnetic field, is introduced. This approach is based on analytical laws deduced from the physical principles that govern the properties of a Hall effect thruster, relying on a list of simplifying assumptions. In addition, constraints on the channel wall temperature as well as on the propellant atom density inside the channel are taken into account. The validity of the scaling laws is discussed in light of a vast database that comprises 23 single-stage Hall effect thrusters covering a power range from 10 W to 50 kW. Finally, the sizing method is employed to obtain a preliminary geometry and the magnetic field strength for a 20 kW and a 25 kW Hall effect thruster, able to deliver a thrust of 1 N, respectively 1.5 N.
Opis fizyczny
Bibliogr. 27 poz., wykr.
  • 1. R.H. FRISBEE, Advanced space propulsion for the 21st century, J. Propulsion Power, 19, 1129, 2003.
  • 2. V.V. ZHURIN, H.R. KAUFMANN, R.S. ROBINSON, Physics of closed drift thrusters, Plasma Sources Sci. Technol., 8, Rl, 1999.
  • 3. N. GASCON, M. DUDECK, S. BARRAL, Wall material effects in stationary plasma thrusters I. Parametric studies of an 3PT-100, Phys. Plasmas, 10, 4123, 2003.
  • 4. C.R. KOPPEL, F. MERCHANDISE, M. PRIOUL, D. ESTUBLIER, F. DARNON, The SMART-1 electric propulsion subsystem around the Moon: In flight experience, Proceedings of the 41th Joint Propulsion Conference, Tucson, Arizona, AIAA paper, 05-3671, 2005.
  • 5. A.I. MOROZOV AND V.V. SAVELYEV, Fundamentals of stationary plasma thruster theory, Reviews of Plasma Physics, 21, B.B. Kadomtsev and V.D. Shafranov [Eds.], Consultant Bureau, New York, 2000.
  • 6. V. KIM, Main physical features and processes determining the performance of stationary plasma thrusters, J. Propul. Power, 14, 736, 1998.
  • 7. J. ASHKENAZY, Y. RAITSES, G. APPELBAUM, Low power scaling of Hall thrusters, Proceedings of the 2nd European Spacecraft Propulsion Conference, Noordwijk, The Netherlands, ESA Publications Division, 1997.
  • 8. V. KHAYMS, M. MARTINEZ-SANCHEZ, Design of miniaturized Hall thruster for microsatellites, Proceedings of the 32nd Joint Propulsion Conference, Lake Buena Vista, AIAA paper, 96-3291, 1996.
  • 9. T. MISURI, F. BATTISTA, C. BARBIERI, E.A. DE MARCO, M. ANDRENUCCI, High power Hall thruster design options, Proceedings of the 30th International Electric Propulsion Conference, Florence, Italy, IEPC paper, 07-311, 2007.
  • 10. Y. DAREN, D. YONGJIE, Z. ZHI, Improvement on the scaling theory of the stationary plasma thruser, J. Propulsion Power, 14, 139 2005.
  • 11. V. KIM, V. KOZLOV, A. SKRYLNIKOV et ai, Development and investigation of the SPT-20 and SPT-25 laboratory models, Proceedings of the 1st Annual International Conference and Exhibition. Small Satellites: New technologies, achievements, problems and prospects for the International cooperation in the new millenium, Section VIII “Jet Propulsion”, Moscow, 2000.
  • 12. J.W. KOO, I.D. BOYD, Modelling of anomalous electron mobility in Hall thrusters, Phys. Plasmas, 13, 033501, 2006 and references herein.
  • 13. A. GALLIMORE, Near- and far-field characterization of stationary plasma thruster plumes, J. Spacecraft Rockets, 38, 441, 2001.
  • 14. J.D. HUBA, NRL Plasma Formulary, Naval Research Laboratory, Washington, 2007.
  • 15. M.A. LIEBERMAN, A.J. LICHTENBERG, Principles of plasma discharges and materials processing, John Wiley & Sons, Inc., New York, 1994.
  • 16. S. MAZOUFFRE, K. DANNENMAYER, J. PEREZ-LUNA, Examination of plasma-wall interactions in Hall effect thruster by means of calibrated thermal imaging, J. Appl. Phys., 102, 23304, 2007.
  • 17. S. MAZOUFFRE, P. ECHEGUT, M. DUDECK, A calibrated infrared imaging study on the steady state thermal behavior of Hall effect thrusters, Plasma Sources Sci. Technol., 15, 13, 2006.
  • 18. T. ITO, N. GASCON, W.S. CRAWFORD, M.A. CAPPELLI, Experimental characterization of a micro-Hall thruster, J. Propul. Power, 23, 5, 2007.
  • 19. G. GUERRINI, C. MICHAUT, M. DUDECK, M. BACAL, Parameter analysis of three small ion thrusters, Proceedings of the 2nd European Spacecraft Propulsion Conference, Noordwijk, The Netherlands, ESA Publications Division, 1997.
  • 20. S. MAZOUFFRE, A. LAZURENKO, P. LASGORCEIX, M. DUDECK, S. D’ESCRIVAN, O. DUCHEMIN, Expanding frontiers: Towards high power Hall effect thrusters for interplanetary jouneys, Proceedings of the 7th International Symposium on Launcher Technologies, Paper O-25, 2007.
  • 21. R.S. JANKOVSKY, C. McLEAN, J. McVEY, Preliminary evaluation of a l0kW Hall thruster, Proceedings of the 37th AIAA Aerospace Science Meeting and Exhibit, Reno, Nevada, AIAA paper, 99-0456, 1999.
  • 22. D.H. MANZELLA, R.S. JANKOVSKY, R.R. HOFER, Laboratory model 50kW Hall thruster, Proceedings of the 39th Joint Propulsion Conference, Indianapolis, Indiana, AIAA paper, 02-3676, 2002.
  • 23. Y. RAITSES, D. STAACK, M. KEIDAR, N.J. FISCH, Electron-wall interaction in Hall thrusters, Phys. Plasmas, 12, 057104, 2005.
  • 24. A. LAZURENKO, V. VIAL, A. BOUCHOULE, A. SKRYLNIKOV, V. KOZLOV, V. KIM, Dual-mode operation of stationary plasma thrusters, J. Propul. Power, 22, 38, 2006.
  • 25. S. MAZOUFFRE, V. KULAEV, Ion diagnostics of a discharge in crossed electric and magnetic fields for electric propulsion, submitted to Plasma Sources Sci. Technol., 2009.
  • 26. K.E. WITZBERGER, D. MANZELLA, Performances of solar electric powered deep space missions using Hall thruster propulsion, Proceedings of the 41st Joint Propulsion Conference, Tucson, Arizona, AIAA paper, 05-4268, 2005.
  • 27. L. JOHNSON, R. A. MEYER, K. FRAME, In-space propulsion technologies for robotic exploration of the solar system, Proceedings of the 42nd Joint Propulsion Conference, Sacramento, CA, AIAA paper, 06-4687, 2006.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.