Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shape sensitivity analysis of eigenvalues revisited

Treść / Zawartość
Warianty tytułu
Języki publikacji
The paper can be considered as a complement to previous papers of the authors. An insight into applied asymptotic analysis of boundary value problems in singularly perturbed domains is presented. As a result, the asymptotic expansions of eigenvalues are obtained and discussed in terms of integral attributes of the geometrical perturbations including the virtual mass tensor, polarization tensor etc. The results are presented in such a way that can be easily employed in numerical methods for shape optimization and inverse problems.
Opis fizyczny
Bibliogr. 15 poz.
  • Institute of Mechanical Engineering Problems, Russian Academy of Sciences Saint-Petersburg, Russia,
  • BIRMAN, M.SH. and SOLOMYAK, M.Z. (1987) Spectral Theory of Self adjoint Operators in Hilbert Space. Dordrecht, D. Reidel Publ. Co.
  • BUCUR, D. and BUTTAZZO, G. (2005) Variational Methods in Shape Optimisation Problems. Progress in Nonlinear Differential Equations and their Applications 65. Birkhäuser, Boston.
  • CAMPBELL, A. and NAZAROV, S.A. (2001) Asymptotics of eigenvalues of a plate with small clamped zone. Positivity 5 (3), 275-295.
  • GADYL’SHIN, R.R. (1986) Asymptotic form of the eigenvalue of a singularly perturbed elliptic problem with a small parameter in the boundary condition. Differentsyalnyie Uravneniya 22, 640-652.
  • HENROT, A. (2006) Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel.
  • KAMOTSKI, I.V. and NAZAROV, S.A. (1998) Spectral problems in singular perturbed domains and self adjoint extensions of differential operators. Trudy St.-Petersburg Mat. Obshch. 6, 151-212 (English translation in: Proceedings of the St. Petersburg Mathematical Society, 2000, 6, 127-181, Amer. Math. Soc. Transl. Ser. 2, 199, Amer. Math. Soc., Providence, RI).
  • MAZJA, V.G., NASAROW, S.A. and PLAMENEVSKII, B.A. (1991) Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. 1. Akademie-Verlag: Berlin. (English translation in: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains 1, Birkhäuser Verlag, Basel, 2000.
  • MAZJA, V.G., NAZAROV, S.A. and PLAMENEVSKII, B.A. (1984) Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes. Izv. Akad. Nauk SSSR. Ser. Mat 48, 2, 347-371. (English translation in: Math. USSR Izvestiya, 1985, 24, 321-345).
  • MOVCHAN, A.B and MOVCHAN, N.V. (1995) Mathematical Modelling of Solids with Nonregular Boundaries. CRC Mathematical Modelling Series. CRC Press, Boca Raton, FL.
  • NAZAROV, S.A. and SOKOŁOWSKI, J. (2008) Spectral problems in the shape optimisation. Singular boundary perturbations. Asymptotic Analysis 56 (3-4), 159-204.
  • OZAWA, SHIN (1985) Asymptotic property of an eigenfunction of the Laplacian under singular variation of domains-the Neumann condition. Osaka J. Math. 22 (4), 639-655.
  • POLYA, G. and SZEGO, G. (1951) Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies 27, Princeton University Press, Princeton, N.J.
  • SOKOŁOWSKI, J. and ZOLÉSIO, J.P. (1992) Introduction to Shape Optimization. Shape Sensitivity Analysis. Springer Series in Computational Mathematics 16. Springer-Verlag, Berlin.
  • SOKOŁOWSKI, J. and ŻOCHOWSKI, A. (1999) On topological derivative in shape optimization, SIAM Journal on Control and Optimization 37 (4), 1251-1272.
  • ZOLÉSIO, J.P. (1981) Semiderivatives of repeated eigenvalues. In: E.J. Haug and J. Cea, eds., Optimization of Distributed Parameter Structures, Sijthoff and Noordhoff.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.