PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A fast and simple algorithm for computing m-shortest paths in stage graph

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the problem of computing m shortest paths between a source node s and a target node t in a stage graph. Polynomial time algorithms known to solve this problem use complicated data structures. This paper proposes a very simple algorithm for computing all m shortest paths in a stage graph efficiently. The proposed algorithm does not use any complicated data structure and can be implemented in a straightforward way by using only array data structure. This problem appears as a sub-problem for planning risk reduced multiple k-legged trajectories for aerial vehicles.
Czasopismo
Rocznik
Strony
91--97
Opis fizyczny
Bibliogr. 7 poz., rys.
Twórcy
autor
  • HRH College of Engineering, University of Nevada Las Vegas, Las Vegas, NV, U.S.A.
autor
  • HRH College of Engineering, University of Nevada Las Vegas, Las Vegas, NV, U.S.A.
autor
  • HRH College of Engineering, University of Nevada Las Vegas, Las Vegas, NV, U.S.A.
  • HRH College of Engineering, University of Nevada Las Vegas, Las Vegas, NV, U.S.A.
Bibliografia
  • [1] Canny J., Reif J., New Lower Bound Techniques for Robot Motion Planning Problems, Proceedings of the 28th IEEE Symposium on Foundations of Computer Science, 1987, 49-60.
  • [2] Chen D. Z., Klenk K. S., Tu H. T., Shortest Path Queries Among Weighted Obstacles in the Recti-linear Plane, SIAM Journal on Computing, Vol. 29, No. 4, 2000, 1223-1246.
  • [3] Eppstein D., Finding the k Shortest Paths, SIAM Journal on Computing, Vol. 28, No. 2, 1998, 652-673
  • [4] Gewali L. P., Meng A. C., Mitchell J. S. B., Path Planning in 0/1/∞ Weighted Regions with Applications, ORSA Journal on Computing, 2, 1990, 253-272.
  • [5] Gewali L. P., Gewali L., Sherwood M., Algorithms for Generating Multiple Risk Reduced Paths, Proceedings of 16th International Conference on Systems Engineering, 2003.
  • [5] Mata C., Mitchell J. S. B., A New Algorithm for Computing Shortest Paths in Weighted Planar Subdivisions, Proceedings of the 13th Annual ACM Symposium on Computational Geometry, 1997, 264-273.
  • [6] Lanthier M., Maheswari A., Sack J. R., Approximating Shortest Paths on Weighted Polyhedral Surfaces, Algorithmica, 30, 2001, 527-562.
  • [7] O'Rourke J., Computational Geometry in C, Cambridge University Press, 1998
Uwagi
Bibliografia: poz 5 powtórzona
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0008-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.