Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BAT5-0006-0065

Czasopismo

Image Processing & Communications

Tytuł artykułu

Image motion estimation: a survey

Autorzy Marchewka, A. 
Treść / Zawartość http://content.sciendo.com/view/journals/ipc/ipc-overview.xml
Warianty tytułu
Języki publikacji EN
Abstrakty
EN This article has the review character and it is an introduction to research in motion analysis used to video sequence compression. In this publication all algorithms are classified into three groups: change detection in scene, characteristic point in image and optical flow. From the group mentioned above, the method that fits best for use in telecommunication systems has emerged.
Słowa kluczowe
PL analiza ruchu   sekwencja wideo   zmiana detekcji   punkt charakterystyczny   przepływ optyczny  
EN motion analysis   video sequence   change detection   characteristic point   optical flow  
Wydawca Instytut Telekomunikacji Uniwersytetu Technologiczno-Przyrodniczego w Bydgoszczy
Czasopismo Image Processing & Communications
Rocznik 2005
Tom Vol. 10, no 1
Strony 5--12
Opis fizyczny Bibliogr. 31 poz., rys.
Twórcy
autor Marchewka, A.
Bibliografia
[1] P. Anandan: A Computational Framework and an Algorithm for Measurement of Visual Motion, International Journal of Computer Vision, Vol. 2, pp. 283-310, 1989. bibitemAr T. Arbel, F.P. Ferrie, M. Mitran: Recognizing Objects From Curvilinear Motion, Submitted to the International Conference on Computer Vision and Pattern Recognition, 2000.
[2] J.L. Barren, D.J. Fleet, S.S. Beauchemin: Performance of Optical Flow Techniques, Internation Journal of Computer Vision, 12:1, pp. 43-77, 1994.
[3] S.M. Benoits, F.P. Ferrie: Monocular Optical Flow for Real-Time Vision Systems, Technical Report, Center for Intelligent Machines, McGill University, 1996.
[4] P. Bouthemy: A Maximum-Likelihood Framework for Determining Moving Edges, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 5, pp. 499-511, May 1989.
[5] P. J. Burt: Fast Filter Transforms for Image Processing, Computer Graphics and Image Processing, Vol. 16, pp. 20-51, 1981.
[6] T. Camus: Real-Time Quantized Optical Flow, Proceedings of IEEE Conference on Computer Architecture for Machine Perception, Como, Italy, pp. 126-131, 1995.
[7] E. De Micheli, V. Torre, S. Uras: The Accuracy of the Computation of Optical Flow and of the Recovery of Motion Parameters, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 5, May 1993.
[8] D.J. Fleet, A.D. Jepson: Computation of Component Image Velocity from Local Phase Information, International Journal of Computer Vision, 5:1, pp. 77-104, 1990.
[9] D.J. Fleet, K. Langley: Recursive Filters for Optical Flow, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, No. 1, pp.61-67, Jan 1995.
[10] S. Ghosal, Petr. Vanek: A Fast Scalable Algorithm for Discontinuous Optical Flow Estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 2, pp. 181-194, Feb. 1996.
[11] S.M. Haynes, R. Jain: Time varying edge detection, Comput. Vision, Graphic, Image Process. Vol. 21, pp. 345-367, 1983.
[12] D.J. Heeger: Optical Flow using Spatiotemporal Filters, International Journal of Computer Vision. Vol. 1, pp. 279-302, 1988.
[13] F. Heitz, P. Bouthemy: Multimodal Estimation of Discontinuous Optical Flow Using Markov Random Fields, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 12, pp. 1217-1232, Dec. 1993.
[14] B.K.P. Horn: Robot Vision, The MIT Press, Cambridge, Massachusetts, 1986.
[15] B.K.P. Horn, E.G. Schunk: Determining Optical Flow, Artificial Intelligence, Vol. 17, pp. 185-201, 1981.
[16] P. Iliev, L. Teskov: Motion detection using image histogram sequence analysis, Signal Processing, Vol 30, pp 373-384, 1993.
[17] H. Liu, T.H. Hong, M. Herman, T. Camus, R. Chellappa: Accuracy vs Efficiency Trade-offs in Optical Flow Algorithms, Computer Vision and Image Understanding, Vol. 72, No. 3, pp. 271-286, 1998.
[18] H. Liu, T.H. Hong, M. Herman, R. Chellappa: A Generalized Motion Model for Estimating Optical Flow Using 3-D Hermite Polynomials, Proceedings of the IEEE International Conference on Pattern Recognition, Jerusalem, Israel, pp. 360-366, 1994.
[19] B. Lucas, T. Kanade: An Iterative Image Regitration Technique with Applications in Stereo Vision, Proceedures of the DARPA Image Understanding Workshop, pp. 121-130, 1981.
[20] H.H. Nagel: Displacement vectors derived from second-order intensity variations in image sequences, Comput. Graph. Image Process, Vol. 21, pp. 85-117, 1983.
[21] H.H. Nagel, W. Enkelmann: An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, pp. 565-593, 1986.
[22] S. Negahdaripour, C.H. Yu, A.H. Shokrollahi: Recovering Shape and Motion From Undersea Images, IEEE Journal of Oceanic Engineering, Vol. 15, No. 3, pp 189-198, July 1990.
[23] P. Nesi, A. Del Bimbo, D. Ben-Tzvi: A Robust Algorithm for Optical Flow Estimation, Computer Vision and Image Understanding, Vol. 62, No.l, pp 59-68, July 1995.
[24] E.G. Schunk: The Image Flow Constraint Equation, Computer Visison, Graphics and Image Processing, Vol. 35, pp 20-46, 1986.
[25] M. Shan, R. Jain: Detecting time-varying corners, Computer Vision Graphics and Image Processing", Vol. 28, pp. 345-355, 1984.
[26] E.P. Simoncelli: Distributed Representation and Analysis of Visual Motion, Ph.D. dissertation, Dept. of Electrical Engineering and Computer Science, MIT, 1993.
[27] A. Singh, P. Allen: Image-Flow Computation: An Estimation-Theoretic Framework and a Unified Perspective, Computer Vision, Graphics and Image Processing, Vol. 56, pp. 152-177, Sept 1992.
[28] K. Skifstad, R. Jain: Illumination independent change detection for real world image sequence, Computer Vision and Image Procesing, Vol. 46, pp. 387-399,1989.
[29] M.E. Spetsakis: Optical Flow Estimation Using Discontinuity Conforming Filters, Computer Vision and Image Understanding, Vol. 68, No. 3, pp. 276-289, Dec. 1997.
[30] J. Weber, J. Malik: Rigid Body Segmentation and Shape Description from Dense Optical Flow Under Weak Perspective, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 2, pp. 139-143, Feb. 1997.
[31] Wu Ying: Optical Flow and Motion Analysis, Electrical and Computer Engineering Northwestern University Evanston, IL 60208.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BAT5-0006-0065
Identyfikatory