Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BAT3-0022-0012

Czasopismo

Journal of Telecommunications and Information Technology

Tytuł artykułu

Application of scanning shear-force microscope for fabrication of nanostructures

Autorzy Sikora, A.  Gotszalk, T.  Sankowska, A.  Rangelow, I. W. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In view of the rapid growth of interest in AFM technique in surface property investigation and local surface modification we describe here an AFM microscope with optical tip oscillation detection. The modular shear-force/tunneling microscope for surface topography measurement and nanoanodisation is described. The measurement instrument presented here is based on the fiber Fabry-Perot interferometer for the measurement of the conductive microtip oscillation that is used as nano e-beam for local surface anodisation. An advantage of this system is that quantitative measurements of tip vibration amplitude are easily performed.
Słowa kluczowe
EN AFM   nanostructures fabrication   shear force microscopy  
Wydawca Instytut Łączności - Państwowy Instytut Badawczy
Czasopismo Journal of Telecommunications and Information Technology
Rocznik 2005
Tom nr 1
Strony 81--84
Opis fizyczny Bibliogr.15 poz., il.
Twórcy
autor Sikora, A.
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology Janiszewskiego st 11/17, 50-372 Wrocław, Poland, andrzej.sikora@pwr.wroc.pl
autor Gotszalk, T.
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology Janiszewskiego st 11/17, 50-372 Wrocław, teodor.gotszalk@pwr.wroc.pl
autor Sankowska, A.
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology Janiszewskiego st 11/17, 50-372 Wrocław, Poland, anna.sankowska@pwr.wroc.pl
autor Rangelow, I. W.
  • Institute of Technical Physics University of Kassel Heinrich-Plett Str. 32 34-109 Kassel, Germany, rangelow@uni-kassel.de
Bibliografia
[1] K. Karrai and R. D. Grober, "Piezoelectric tip-sample distance control for near field optical microscopes", Appl. Phys. Lett., vol. 66, p. 1842, 1995.
[2] G. Binnig, H. Rohrer, Ch. Gerber, and E.Weibel, "Tunneling through a controllable vacuum gap", Appl. Phys. Lett., vol. 40, p. 178, 1982.
[3] R. Garcia, M. Calleja, and H. Rohrer J., "Patterning of silicon surfaces with noncontact atomic force microscopy: field-induced formation of nanometer-size water bridges", Appl. Phys., vol. 86, p. 1898, 1999.
[4] J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, and H. Yokoyama, "Role of space charge in scanned probe oxidation", J. Appl. Phys., vol. 84, p. 6891, 1998.
[5] M. Calleja and R. Garcia, "Nano-oxidation of silicon surfaces by noncontact atomic-force microscopy: size dependence on voltage and pulse duration", Appl. Phys. Lett., vol. 76, p. 3427, 2000.
[6] M. Tello and R. Garcia, "Nano-oxidation of silicon surfaces: comparison of noncontact and contact atomic-force microscopy methods", Appl. Phys. Lett., vol. 79, p. 424, 2001.
[7] J. A. Dagata, F. Perez-Murano, G. Abadal, K. Morimoto, T. Inoue, J. Itoh, and H. Yokoyama, "Predictive model for scanned probe oxidation kinetics", Appl. Phys. Lett., vol. 76, p. 2710, 2000.
[8] K. Matsumoto, Y. Gotoh, T. Maeda, J. A. Dagata, and J. S. Harris, "Room-temperature single-electron memory made by pulse-mode atomic force microscopy nano-oxidation process on atomically at a-alumina substrate", Appl. Phys. Lett., vol. 76, p. 239, 2000.
[9] E. S. Snow, P. M. Campbell, F. A. Buot, D. Park, C. R. K. Marrian, and R. Magno, "A metal/oxide tunneling transistor", Appl. Phys. Lett., vol. 72, p. 3071, 1998.
[10] R. Held, T. Vancura, T. Heinzel, K. Ensslin, M. Holland, and W. Wegscheider, "In-plane gates and nanostructures fabricated by direct oxidation of semiconductor heterostructures with an atomic force microscope", Appl. Phys. Lett., vol. 73, p. 262, 1998.
[11] E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, S. C. Minne, T. Hunt, and C. F. Quate, "Terabit-per-square-inch data storage with the atomic force microscope", Appl. Phys. Lett., vol. 75, p. 3566, 1999.
[12] V. Bouchiat, M. Faucher, C. Thirion, W. Wernsdorfer, T. Fournier, and B. Pannetier, "Josephson junctions and superconducting quantum interference devices made by local oxidation of niobium ultrathin films", Appl. Phys. Lett., vol. 79, p. 123, 2001.
[13] F. S. Chien, C.-L. Wu, Y.-C. Chou, T. T. Chen, S. Gwo, and W.-F. Hsieh, "Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching", Appl. Phys. Lett., vol. 75, p. 2429, 1999.
[14] S. C. Minne, J. D. Adams, G. Yaralioglu, S. R. Manalis, A. Atalar, and C. F. Quate, "Centimeter scale atomic force microscope imaging and lithography", Appl. Phys. Lett., vol. 73, p. 1742, 1998.
[15] A. Sikora, T. Gotszalk, R. Szeloch, A. Sankowska, and A. Marendziak "Modularny mikroskop tunelowy i się atomowych do badań własności elektrycznych nanostruktur", in Krajowa Konferencja Elektroniki, Kołobrzeg, Poland, 2003 (in Polish).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BAT3-0022-0012
Identyfikatory