Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of five depth-averaged 2-d turbulence models for river flows

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this study, five depth-averaged 2-D turbulence models for river flows, including the depth-averaged parabolic eddy viscosity model, modified mixing length model, standard k-e turbulence model, non-equilibrium k-e turbulence model and re-normalized group (RNG) k-e turbulence model, are compared in the simulation of flows around a spur-dyke, in a sudden-expanded flume and in two natural rivers. It is shown that in the two field cases where the channel geometries are simple, all five models can give generally good predictions for the main flow features. However, in the two laboratory cases where the channel geometries are complex, differences have been found among these models. The depth-averaged parabolic eddy viscosity model over-predicts the recirculation flows behind the spur-dyke and the flume expansion. The modified mixing length model gives better prediction than the depth-averaged parabolic model. The standard k-e turbulence model predicts well for the recirculation flow in the sudden-expended flume, but under-predicts the length of recirculation zone behind the spur-dyke, while the non-equilibrium and RNG k-e turbulence models provide good results for both laboratory cases.
Opis fizyczny
Bibliogr. 18 poz., il.
  • National Center for Computational Hydroscience and Engineering, The University of Mississippi, MS 38677, USA,
  • National Center for Computational Hydroscience and Engineering, The University of Mississippi, MS 38677, USA
  • National Center for Computational Hydroscience and Engineering, The University of Mississippi, MS 38677, USA
  • Chen Y.-S., Kim S.-M. (1987), Computation of Turbulent Flows using an Extended k-" Turbulence Closure Model, CR-179204, NASA, p. 21.
  • De Vriend H. J., Geldof H. J. (1983), Main Flow Velocity in Short and Sharply Curved River Bends, Report No. 83–6, Delft University of Technology, The Netherlands.
  • Elder J. W. (1959), The Dispersion of Marked Fluid in Turbulent Shear Flow, J. of Fluid Mechanics, Vol. 5, Part 4.
  • Fischer H. B., List E. J., Koh R. C. Y., Imberger J., Brooks N. H (1979), Mixing in Inland and Coastal Waters, Academic Press, New York.
  • Flokstra C. (1977), The Closure Problem for Depth-Average Two Dimensional Flow, Publication No. 190, Delft Hydraulics Laboratory, The Netherlands.
  • Rajaratnam N., Nwachukwu B. A. (1983), Flow Near Groin-Like Structures, J. of Hydraulic Engineering, 109(3), 463–481.
  • Rastogi A. K., Rodi W. (1978), Predictions of Heat and Mass Transfer in Open Channels, J. of the Hydraulics Division, ASCE, 104(3), 397–420.
  • Rhie C. M., Chow W. L. (1983), Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation, AIAA J., 21, 1525–1532.
  • Rodi W. (1993), Turbulence Models and Their Application in Hydraulics, 3rd Ed., IAHR Monograph, Balkema, Rotterdam.
  • Shyy W., Thakur S. S., Quyang H., Liu J., Blosch, E. (1997), Computational Techniques for Complex Transport Phenomenon, Cambridge University Press.
  • Stone H. L. (1968), Iterative Solution of Implicit Approximation of Multidimensional Partial Differential Equations, SIAM J. on Numerical Analysis, 5, 530–558.
  • Thorne C. R., Zevenbergen L. W., Bradley J. B., Pitlick J. C. (1985), Measurements of Bend Flow Hydraulics of the Fall River at Bankfull Stage, WRD Project Report No. 85-3, Water Resources Division, Fort Collins, Colorado.
  • Wu W. (2004), Depth-Averaged 2-D Numerical Modeling of Unsteady Flow and Nonuniform Sediment Transport in Open Channels, accepted for publication by J. of Hydraulic Engineering, ASCE.
  • Wu W., Wang S. S. Y. (2004), Depth-Averaged 2-D Calculation of Flow and Sediment Transport in Curved Channels, accepted for publication by Int. J. of Sediment Research.
  • Xie B. L. (1996), Experiment on Flow in a Sudden-Expanded Channel, Technical Report, Wuhan University of Hydraulic and Electric Engineering, China.
  • Yakhot V., Orszag S. A., Thangam S., Gatski T. B., Speziale C. G. (1992), Development of Turbulence Models for Shear Flows by a Double Expansion Technique, Phys. Fluids A, 4(9).
  • Zhu J. (1991), A Low Diffusive and Oscillation-Free Convection Scheme, Communications in applied numerical methods, Vol. 7.
  • Zhu J. (1992), FAST2D: A Computer Program for Numerical Simulation of Two-Dimensional Incompressible Flows with Complex Boundaries, Report No. 690, Institute of Hydromechanics, Karlsruhe University.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.