PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wind turbines' rolling element bearings fault detection enhancement using minimum entropy deconvolution

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Poprawa wykrywania uszkodzeń łożysk tocznych w turbinach wiatrowych przy użyciu metody minimum entropy deconvolution
Języki publikacji
EN
Abstrakty
EN
Minimum Entropy Deconvolution (MED) has been recently introduced to the machine condition monitoring field to enhance fault detection in rolling element bearings and gears. MED proved to be an excellent aid to the extraction of these impulses and diagnosing their origin, i.e. the defective component of the bearing. In this paper, MED was applied for fault detection and diagnosis in rolling element bearings in wind turbines. MED parameter selection as well as its combination with pre-whitening is discussed. Two main cases are presented to illustrate the benefits of the MED technique. The first was taken from a fan bladed test rig. The second case was taken from a wind turbine with an inner race fault. The usage of the MED technique has shown a strong enhancement for both fault detection and diagnosis. The paper contributes to the knowledge of fault detection of rolling elements bearings through providing an insight into the usage of MED in rolling element bearings diagnostic by providing a guide for the user to select optimum parameters for the MED filter and illustrating these on new interesting cases both from a lab environment and an actual case.
PL
Metoda Minimum Etropy Deconvolution (MED) została niedawno wprowadzona do diagnostyki w celu poprawy wykrywania uszkodzeń łożysk tocznych i przekładni. MED okazała się bardzo pomocna w ekstrakcji impulsów pochodzących od tych uszkodzeń i określania miejsca ich pochodzenia (np. uszkodzonego elementu łożyska). W niniejszym artykule MED zastosowano do wykrywania uszkodzeń łożysk tocznych w turbinach wiatrowych. W artykule opisano zagadnienie selekcji parametrów metody MED oraz metody "wybielania sygnału" (ang. pre-whitening). Korzyści płynące z zastosowania metody przedstawiono na dwóch przypadkach. Pierwszym jest stanowisko laboratoryjne, a drugim - turbina wiatrowa z uszkodzoną bieżnią wewnętrzną łożyska generatora. Zastosowanie metody MED pozwoliło na znaczącą poprawę zarówno wykrycia, jak i lokalizacji uszkodzenia. Najistotniejszymi częściami niniejszego artykułu są: opis metody MED, wskazówki dotyczące optymalnego dostrojenia metody oraz interesujące przypadki zarówno laboratoryjne, jak i rzeczywiste.
Czasopismo
Rocznik
Tom
Strony
53--59
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
autor
  • AGH University of Science and Technology, Department of Robotics and Mechatronics, Al. Mickiewicza 30, 30-059 Krakow, Poland, tbarszcz@agh.edu.pl
Bibliografia
  • [1] Gajetzki, M. (2006): SeaCom - Digital Measurement and Communication Systems, SeaCom, Herne.
  • [2] Randall R. B., Antoni J. (2011). Rolling element bearing diagnostics-A tutorial, Mechanical Systems and Signal Processing, 25: 485-520.
  • [3] Heng A., Zhang S., Tan A. C. C., Mathew J. (2009): Rotating machinery prognostics: State of the art, challenges and opportunities, Mechanical Systems and Signal Processing, 23: 724 - 739.
  • [4] Cempel C. (2008). Decomposition of symptom observation matrix and grey forecasting in vibration condition monitoring of machines. International Journal of Applied Mathematics and Computer Science, 18: 569 - 579.
  • [5] Klein, U. (2003): Schwingungsdiagnostische Beurteilung von Maschinen und Anlagen (Vibrodiagnostic assessment of machines and devices) [in German], Stahleisen Verlag, Duesseldorf 2003.
  • [6] Ho, D., Randall, R.B. (2000): Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals, Mechanical Systems and Signal Processing 14: 763-788.
  • [7] Antoni, J., Randall, R.B. (2004): Unsupervised noise cancellation for vibration signals: Part Ievaluation of adaptive algorithms. Mechanical Systems and Signal Processing, 18: 89-10.
  • [8] Antoni, J., Randall, R.B. (2004): Unsupervised noise cancellation for vibration signals: Part II- a novel frequency domain algorithm. Mechanical Systems and Signal Processing, 18: 103-117.
  • [9] Braun S. (2010): The synchronous (time domain) average revisited, The 24th International Conference on Noise and Vibration engineering (ISMA2010), Leuven (Belgium), 20 to 22 September 2010.
  • [10] Barszcz, T. (2009): Decomposition of vibration signals into deterministic and nondeterministic components and its capabilities for fault detection and identification. International Journal of Applied Mathematics and Computer Science, 19: 327-335.
  • [11] Antoni, J., Randall, R.B. (2006): The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mechanical Systems and Signal Processing, 20: 308-331.
  • [12] Barszcz, T., Jabłoński, A. (2011): A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram. Mechanical Systems and Signal Processing, 20: 308-331.
  • [13] Sawalhi, N., Randall, R.B., Endo, H. (2007): The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis, Mechanical Systems and Signal Processing, 21: 2616-2633.
  • [14] Wiggins, R. A. (1978): Minimum entropy deconvolution. Geoexploration, 16: 21-35.
  • [15] Nandi, A. K., Mampel, D., Roscher, B. (1997): Blind deconvolution of ultrasonic signals in non-destructive testing applications. IEEE Trans of Signal Processing, 45: 1382-1390.
  • [16] Boumahdi, M., Lacoume, J. (1995): Blind identification using the Kurtosis: Results of field data processing. IEEE Trans of Signal Processing, 0-7803-2431-5/95, pp. 1960-1983.
  • [17] Endo, H., Randall, R.B. (2007): Application of a minimum entropy deconvolution filter to enhance Autoregressive model based gear tooth fault detection technique. Mechanical Systems and Signal Processing, 21: 906-919.
  • [18] Wang, W., Wong, A. K. (2002): Autoregressive model-based gear fault diagnosis. Transaction of ASME, Journal of Vibration and Acoustics, 124: 172- 179.
  • [19] Lee J. Y., Nandi A. K. (1999): Extraction of impacting signals using blind de-convolution. Journal of Sound and Vibration 232: 945 - 962.
  • [20] Hau, E. (2006): Wind Turbines. Fundamentals, Technologies, Applications, Economics. 2nd Edition, Springer Verlag, Berlin Heisenberg.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0063-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.