Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-AGHM-0034-0001

Czasopismo

Prace Instytutu Nafty i Gazu

Tytuł artykułu

Zastosowanie mikrotomografii rentgenowskiej do rozwiązywania zagadnień geologicznych i geofizycznych

Autorzy Dohnalik, M.  Zalewska, J. 
Treść / Zawartość http://bc.inig.pl:8080/publication/974
Warianty tytułu
EN Applications of roentgen microtomography in solving geological and geophysical issues
Języki publikacji PL
Abstrakty
PL W ramach pracy omówiono podstawy teoretyczne mikrotomografii rentgenowskiej, budowę i zasadę działania mikrotomografu rentgenowskiego, opisano sposób akwizycji danych, ich rekonstrukcji i wizualizacji. Pokazano krok po kroku metodykę prowadzenia akwizycji danych za pomocą programu InspectX, rekonstrukcji obrazu z użyciem programu CT-Pro oraz trójwymiarowej wizualizacji obrazu programem AVIZO. Przytoczono przykłady zastosowań mikrotomografii rentgenowskiej w badaniu skał oraz przedstawiono wyniki pomiarów testowych, obrazujących wewnętrzną strukturę przestrzeni porowej próbek skał piaskowcowych utworów mioceńskich i formacji czerwonego spągowca. Pokazano możliwości zastosowania micro-CT w badaniu szczelin, z uwzględnieniem osiągnięć różnych autorów. Zaprezentowano wizualizację szczelin wygenerowanych za pomocą mikrotomografu rentgenowskiego Benchtop CT160 dla kilku przykładowych próbek skał węglanowych oraz pomierzono ich rozwartość i szerokość. Przedstawiono ogólny przegląd literaturowy zastosowania CT w naukach o ziemi. Specjalną uwagę poświęcono kilku zagadnieniom: m.in. ekstrakcji parametrów sieci porowej, ocenie procesu kwasowania, ocenie zmiany stanu nasycenia poprzez skanowanie w odstępach czasowych oraz charakterystykę podziemnych magazynów CO2 na podstawie techniki tomograficznej.
EN This research describes basis of roentgen computed microtomography, build description of roentgen microtomograph, data acquisition process, collected data reconstruction and 3D visualization. Research includes step by step acquisition methodology using InspectX software and image reconstruction using CT-Pro software and 3D visualization using AVIZO software. This work includes some examples of application of roentgen computed microtomography in rock researches. Shows results of test researches of visualizing internal pore structure of Miocene and rotliegend sandstone samples. This research shows possibilities of micro-CT application in crack researches referring to publications of many authors. This work presents visualization and measurement of some crack apertures images generated using roentgen computed microtomograph (Benchtop CT 160) based on few samples of carbonate rock. This work shows general literature survey of application of CT in earth sciences. Special emphasis was put on pore network extraction, monitoring wormhole initiation and growth inside carbonate core plugs during the injection of emulsified and visualization of pore space fluid penetration.
Słowa kluczowe
PL mikrotomografia rentgenowska  
EN Roentgen microtomography  
Wydawca Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Czasopismo Prace Instytutu Nafty i Gazu
Rocznik 2009
Tom nr 157
Strony 1--94
Opis fizyczny Bibliogr. 83 poz., rys., wykr.
Twórcy
autor Dohnalik, M.
autor Zalewska, J.
  • Instytut Nafty i Gazu
Bibliografia
[1] Akin S., Kovscek A. R.: Computed tomography in petroleum engineering research. Geological Society, London, Special Publications, vol. 215, p. 23-38, 2003.
[2] Anderson S.H., Wang H., Peyton R.L., Gantzer C.J.: Estimation of porosity and hydraulic conductivity from X-ray CT-measured solute breakthrough. Geological Society, London, Special Publications vol. 215, p. 135-149, 2003.
[3] Arnold J.R., Testa J.P.J., Friedman P.J., Kambic G.X.: Computed tomographic analysis of meteorite inclusions. Science, 219, p. 383-384, 1982.
[4] Bazin B., Abdulahad G.: Experimental investigation of some properties of emulsified acid systems for stimulation of carbonate formations. SPE 53237 presented at the SPE Middle East Oil Show held in Bahrain, 20-23 February 1999.
[5] Bazin B., Bieber M.T., Roque C., Bouteca M.: Improvements in the Characterization of the Acid Wormholing by “In Situ” XRay CT Visualizations. SPE 31073 presented at the SPE International Symposium on Formation Damage Control held in Lafayette, Louisiana, 14-15 February 1995.
[6] Bertels S.P., DiCarlo D.A., Blut M.J.: Measurement of aperture distribution capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning. Water Resources Research, 37, p. 649-662, 2001.
[7] Brown A.R., Kranz R.L., Bonner B.P.: Correlation between the surfaces of natural rock joints. Geophysical Research Letters, 13, p.1430-1433, 1986.
[8] Capowlez Y., Pierret A., Daniel O., Monestiez P., Kretzschmar A.: 3D skeleton reconstructions of natural earthworm burrow systems using CAT scan images of soil cores. Biology and Fertility of Soils, 27, p. 51-59, 1998.
[9] Carlson W.D., Rowe T., Ketcham R.A, Colbert W.M.: Applications of high-resolution X-ray computed tomography in petrology, meteoritics and palaeontology. Geological Society, London, Special Publications, vol. 215, p. 7-22, 2003.
[10] Cavouras D., Kandarakis I., Bakas A., Triantis D., Nomicos C.D., Panayiotakis G.S.: An experimental method to determine the effective luminescence efficiency of scintilator- photodetector combinations used in X-ray medical imaging systems. 1998.
[11] Cnudde V.: Exploring the potential of X-ray tomography as a new non-destructive research tool in conservation studies of natural building stones. IWT-Vlaanderen, Belgia 2005.
[12] Denison C., Carlson W.D.: Three-dimensional quantitative textural analysis of metamorphic rocks using high-resolution computed X-ray tomography. 2. Application to natural samples. Journal of Metamorphic Geology, 15, p. 45-57, 1997.
[13] Delerue J.F., Perrier E., Timmerman A., Swennen R.: 3D soil image characterization applied to hydraulic properties computation. Geological Society, London, Special Publications, vol. 215, p. 167-176, 2003.
[14] Detwiler R.L., Pringle S.E., Glass R.J.: Measurement of fracture aperture fields using transmited light; an evaluation of measurement errors and their influence on simulations of flow and transport through a single fracture. Water Resources Research, 35, p. 2605-2617, 1999.
[15] Dierick M., Vlassenbroeck J., Masschaele B., Cnudde V., Van Hoorebeke L., Hillenbach A.: High-speed neutron tomography of dynamic processes. Nuclear Instruments and Methods in Physics Research A 542 296-301, 2005.
[16] Durocher K., Kotzer T., Whittaker S.: Physical and Chemical Characterization of Subterranean CO2 Storage Sites Using Synchrotron-based Computed Microtomography Techniques in Summary of Investigations. V Saskatchewan Geological Survey, 2005.
[17] Eisberg R., Resnick R.: Firyka kwantowa atomów, cząsteczek, ciał stałych, jąder i cząstek elementarnych. PWN, Warszawa 1983.
[18] Evans: The Atomic Nucleus. McGraw-Hill Book Co, New York City 1995.
[19] Fohrer N., Berkenhagen J., Hecker J.M., Rudolph A.: Changing soil and surface conditions during rainfall. Single rainstorm/subsequent rainstorms. Catena, 37, p. 355-375, 1999.
[20] Flisch A., Becker A.: Industrial X-ray computed tomography studies of lake sediment drill cores. Geological Society, London, Special Publications, vol. 215, p. 205-212, 2003.
[21] Gentier S., Bilaux D., Vliet L.V.: Laboratory testing of the voids of a fracture. Rock Mechanics, 22, p.149-157, 1989.
[22] Geraud Y., Surma F., Mazerolle F.: Porosity and , fluid flow characterization of granite by capillary wetting using X-ray computed tomography. Geological Society, London, Special Publications, vol. 215, p. 95-105, 2003.
[23] Gostkowska B., Zajdel J.: Wybrane zagadnienia fizyki jądrowej. ROINTE Energetyki i Energii Atomowej, Warszawa 1977.
[24] Hainsworth J.M., Aylmore L.A.G.: The use of computer-assisted tomography to determine spatial distribution of soil water content. Australian Journal of Soil Research, 21, p. 435-443, 1983.
[25] Hammersgerb P., Mangard M.: Correction of beamhardering artefact in computerized tomography. Journal of X-ray Science and Technology, 8, p. 75-93, 1998.
[26] Haubitz B., Prokop M., Ostrom J.H., Wellnhofer P.: Computed tomography of Archeopterix. Paleobiology, 14, p. 206-213, 1988.
[27] Hirono T., Takahashi M., Nakashima S.: Direct imaging of fluid flow in fault-related rocks by X- ray CT. Geological Society, London, Special Publications, vol. 215, p. 107-115, 2003.
[28] Hoefner M.I., Fogler H.S.: Effective matrix acidizing in carbonates using microemulsions. Chem. Eng. Prog. 40-44, 1985.
[29] Hounsfield G.N.: A method of and apparatus for examination of a body by radiation such as X- or gamma-radiation. British Patent No 1.283.915, London 1972.
[30] Hounsfield G.N.: Computerized transverse axial scanning (tomography). Part 1: Description of system. British Journal of Radiology, 46, p. 1016-1022, 1973.
[31] Instrukcja obsługi aparatu SkyScan.
[32] Instrukcja obsługi programu Inspect X operator's manual.
[33] Johns R.A., Steude J.S., Castanier L.M., Roberts P.V.: Nondestructive measurements of fracture aperture in crystalline rock cores using X-ray computed tomography. Journal of Geophysical Research, 98, p. 1889-1900, 1993.
[34] Karacan C.O., Okandan E.: Adsorption and gas transport in coal microstructure: investigation and evaluation by quantitative X-ray CT imaging. Fuel, 80, p. 509-520, 2001.
[35] Karacan C.O., Grader A.S. Halleck P.M.: Evaluation of local porosity changes in limestone samples under triaxial stress field by using X-ray computed tomography. Geological Society, London, Special Publications, vol. 21 S, 177-189, 2003.
[36] Keller A.: High resolution, non-destructive measurement and characterization of fracture aperture. International Journal of Rock Mechanics and Mining Sciences, 35, p. 1037-1050, 1998.
[37] Kenter J.A.M.: Applications of computerized tomography in sedimentology. Marine Geotechnology, 8, p. 201-211, 1989.
[38] Kumar A.T.A., Majors P.D., Rossen W.R.: Measurement of aperture and multiphase flow in fractures using NMR imaging. In. Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, Texas, Paper SPE-30588.
[39] Leonard A., Blacher S., Marchot P., Pirard J.P., Crine M.: Image analysis of X-ray microtomograms of soft materials during convective drying. Journal of Microscopy, vol. 212, 2 November 2003.
[40] Nakashima Y., Watanabe Y.: Estimate of transport properties of porous media by microfocus X- ray computed tomography and random walk simulation. Water Resources Research, vol. 38, no. 12, 2002.
[41] O'Neill M.A., Goodwin A.K., Anderson W.F.: The use of X-ray computed tomography in the investigation of the settlement behaviour of compacted mudrock. Geological Society, London, Special Publications, vol. 215, p. 199-204, 2003.
[42] Peters E.J., Gharbi R., Afzal N.: A look at dispersion in porous media through computed tomography imaging. Journal of Petroleum Science and Engineering, 15, p. 23-31, 1996.
[43] Petrovic A.M., Siebert J.E., Rieke P.E.: Soil bulk density analysis in three dimensions by computed tomographic scanning. Soil Science Society of America Journal, 46, p. 445-450, 1982.
[44] Peyton R.L., Haeffner B.A., Anderson S.H., Gantzer C.J.: Applying X-ray CT to measure macropore diameters in undisturbed soil cores. Geoderma, 53, p. 329-340, 1992.
[45] Pierret A., Capowiez .Y., Belzunces L., Moran C.J.: 3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis. Geoderma, ] 06, p. 247-271, 2002.
[46] Polak A., Yasuhara H., Elsworth D., Liu J., Grader A., Halleck P.: The evolution of permeability in natural fractures - the competing roles of pressure solution and free face dissolution. Symposium SS03, EUG XI, 200L
[47] Pyrak-Nolte L.J., Myer L.R., Cook N.G.W.; Witherspoon P.A.: Hydraulik and mechanical properties of natural fractures in low permeability rock. In.: Herget G., Vongpaisal S. Proceedings of the 6`h International Congress of Rock Mechanic. Balkema, Rotterdam, p. 225-231, 1987.
[48] Raynaud S., Fabre D., Mazerolle F., Geraud Y.: Analysis of the internal structure of rocks and characterisation of mechanical deformation by a non-destructive method: X-ray tomodensitometry. Tectonophysics, 159, p. 149-159, 1989.
[49] Renshaw C.E., Dadakis J.S., Brown S.R.: Measuring fracture apertures: a comparison of methods. Geophysical Research Letters, 27, p. 289-292, 2000.
[50] Rivers M.: Tutorial Introduction to X-ray Computed Microtomography Data Processing. University of Chicago, 1998.
[51 ] Rogers S. W.: Allosaurus, crocodiles, and birds: evolutionary clues from spiral computed tomography of an endocast. Anatomical Record, 257, p. 162-173, 1999.
[52] Rogasik H., Onasch I., Brunotte J., Jegou D. Wendroth O.: Assessment of soil structure using X- ray computed tomography. Geological Society, London, Special Publications, vol. 215, p. 151- 165, 2003.
[53] Rousset-Tournier B., Mazerol1e F., Geraud Y., Jeannette D,: Rock drying tests monitored by X- ray computed tomography - the effect of saturation methods on drying behaviour. Geological Society, London, Special Publications, vol. 215, p. 117-125, 2003.
[54] Ruiz de Argandona V.G., Rodriguez-Rey A., Celorio C., Calleja L., Suarez del Rio L.M: Characterization by X-ray computed tomography of water absorption in a limestone used as building stone in the Oviedo Cathedrad (Spain). Geological Society, London, Special Publications, vol. 215, 127-134, 2003.
[55] Ruiz de Argandona V.G., Rodriguez Rey A., Celorido C., Suarez del Rio L.M., Calleja L., Llavona J.: Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomitic rock during freezethaw cyclic tests. Physics and Chemistry of the Earth (Part A), 24, p. 633-637, 1999.
[56] Saraf D.N.: Methods of In-Situ Saturation Determination During Core Tests Involving Multiphase Flow. Petroleum Recovery Inst. Report, 1981.
[57] Sato A., Fukahori D., Sugawara K.: Crack opening analysis by the X-ray CT image subtraction method. X-ray CT for Geomaterials, p. 247-254, 2004.
[58] Schreurs G., Hanni R., Panien M., Vock P.: Analysis of analogue models by helical X-ray computed tomography. Geological Society, London, Special Publications, vol. 215, 213-223, 2003.
[59] Sellers E., Vervoort A., Van Cleynenbreugel J.: Three-dimensional visualization of fractures in rock test samples, simulating deep level mining excavations, using X-ray computed tomography. Geological Society, London, Special Publications, vol. 215, p. 69-80, 2003.
[60] Siddiqui S., Nasr-El-Din H.A., Khamees A.A.: Wormhole initiation and propagation of emulsifred acid in carbonate cores using computerized tomography. Journal of Petroleum Science and Engineering, 54, s. 93-111, 2006.
[61] Skrzyński W.: Rentgenowska tomografia komputerowa. Cz. 2. Zakład Radiologii Centrum Onkologii w Bydgoszczy, 2004.
[62] http://radiologia.co.bydgoszcz.pl/kt-fizyką cz.2.htm#Źródło%20promieniowania
[63] Stock S.R., Dahl T., Barss J., Veis A., Fezzaa K., Lee W.K.: Mineral phase microstructure in teeth of the short spined sea urchin (Lytechinus variegatus) studied with X-ray phase contrast imaging and with absorption microtomography. Advances in X-ray Analysis, 45, p. 133-138, 2002.
[64] Stock S.R., Veis A.: Preliminary microfocus X-ray computed tomography survey of echinoid fossil microstructure. Geological Society, London, Special Publications, vol. 215, p. 225-235, 2003.
[65] Sugawara K., Fukahori D., Iwatani T., Ikutake T., Kubota S.: Analysis of wetting process of rock by means of X-ray CT. X-ray CT for Geomaterials, p. 315-334, 2004.
[66] Sugawara K., Obara Y., Sato A.: Visualization of water saturation process in rock by X-rays CT. 99' Japan-Korea Joint Symposium on Rock Engng. Fukuoak, p. 503-508, 1999.
[67] Szummer: Podstawy ilościowej mikroanalizy rentgenowskiej. WNT, Warszawa 1994.
[68] Takemura T., Oda M., Takahashi M.: Microstructure observation In deformed geomaterials using microfocus X-ray computed tomography. X-ray CT for Geomaterials. p. 299-304, 2004.
[69] Timmerman A., Vandersteen K., Fuchs T., Vancleynenbreugel J., Feyen J.: A flexible and effective pre-correction algorithm for non medical applications with clinical X-ray CT scanners. In: Proceedings of the Workshop on Modelling of Transport Processes in Soil at Various Scales in Time an Space, Leuven, p. 121-131, Belgium 24-26 November 1999.
[70] Thomson P.R., Wong R.C.K.: Monitoring void ratio redistribution during continuous undrained triaxial compression by X-ray computed tomography. Geological Society, London, Special Publications, vol. 215, p. 191-198, 2003.
[71] Wellington S.L., Vinegar H.J.: X-ray computerized tomography. Journal of Petroleum Technology, p. 885-898, 1987.
[72] Van de Casteele E.: Model-based approach for Beam Hardening Correction and Resolution Measurements in Microtomography. Antwerpen 2004.
[73] Vandersteen K., Busselen B., Van Den Abeele K., Carmeliet J.: Quantitative characterization of fracture apertures using microfocus computed tomography. Geological Society, London, Special Publications, vol. 215, 61-68, 2003.
[74] Van Geet, M., Swennen, R., Wevers, M.: Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography. Sedimentary Geology, 132, p. 25-36, 2000.
[75] Van Geet M.: Optimisation of microfocus x-ray computer tomography for geological research with special emphasis on coal components (macerals) and fractures (cleats) characterisation. PhD thesis, K.U. Leuven, Belgium 2001.
[76] Van Geet M., Lagrou D., Swennen R.: Porosity measurements of sedimentary rocks by means of microfocus X-ray computed tomography (microCT). Geological Society, London, Special Publications, vol. 215, p. 51-60, 2003.
[77] Verhelst F., Vervoort A., De Bosscher P.H., Marchal G.: X-ray computerized tomography: determination of heterogeneities in rock. In: Proceedings of the 8th International Congress of Rock Mechanic. Balkema, Rotterdam, p. 105-108, 1995.
[78] Vinegar H.J.: X-ray CT and NMR imaging of rocks. Journal of Petroleum Technology, 38, p. 257-259, 1986.
[79] Vinegar H.J., Wellington S.L.: Tomographic imaging of three phase flow experiments. Review of Scientific Instruments, 58, p. 96-107, 1986.
[80] Vinegar H.J., de Waal H., Wellington S.L.: CT studies of Compaction in Castlegate Sandstone. J. Rock Mechanics in press, 1987.
[81] Wellington S.L. Vinegar H.J.: X-ray Computerized Tomography. Journal of Petroleum Technology, 39, p. 885-898, 1987.
[82] Yoshino N., Sawada A., Sato H.: An examination of aperture estimation in fracture rock. X-ray CT for Geomaterials, p. 255-262, 2004.
[83] Youssef S., Rosenberg E., Gland N., Bekri S., Vizika O.: Quantitative 3D characterisation of the pore space of real rocks: improved micro-CT resolution and pore extraction methodology. SCA2007-17, 2007.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-AGHM-0034-0001
Identyfikatory