Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The concept of [r, s, t]-colourings was recently introduced by Hackmann, Kemnitz and Marangio [3] as follows: Given non-negative integers r, s and t, an [r, s, t]-colouring of a graph G = (V(G), E(G)) is a mapping c from V(G) ∪ E(G) to the colour set {1, 2,..., k} such that c(vi) - c(vj) ≥ r for every two adjacent vertices vi, vj, c(ei) - c(ej) ≥ s for every two adjacent edges ei, ej, and c(vi) - c(ej) ≥ t for all pairs of incident vertices and edges, respectively. The [r, s, t]-chromatic number Xr,s,t(G) of G is defined to be the minimum k such that G admits an [r, s, t]-colouring. In this paper, we determine the [r, s, t]-chromatic number for paths.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
131--149
Opis fizyczny
Bibliogr. 6 poz., rys., tab.
Twórcy
autor
autor
- Graduiertenkolleg "Räumliche Statistik", Technische Universität Bergakademie Freiberg, 09596 Freiberg, salvador@mathe.tu-freiberg.de
Bibliografia
- [1] Brooks R.L., On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941), 194-197.
- [2] T.R. Jensen, B. Toft, Graph Coloring Problems, Wiley-Interscience, New York 1995.
- [3] A. Kemnitz, M. Marangio, [r,s,t]-Colorings of Graphs, Discrete Math., to appear.
- [4] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964), 25-30.
- [5] D.B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall (2001).
- [6] H.P. Yap, Total Colourings of Graphs, Springer (Lecture Notes in Mathematics; 1623) (1996).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH4-0008-0011