Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication and characterization of composite materials based on porous ceramic preform infiltrated by elastomer

Treść / Zawartość
Warianty tytułu
Języki publikacji
The paper presents the experimental results of fabrication and characterization of ceramic- elastomer composites. They were obtained using pressure infiltration of porous ceramics by elastomer As a result the composites in which two phases are interpenetrating three-dimensionally and topologically throughout the microstructure were obtained. In order to enhance mechanical properties of preforms a high isostatic pressure method was utilized. The obtained ceramic preforms with porosity gradient within the range of 20-40% as well as composites were characterized by X-ray tomography. The effect of volume fraction of pores on residual porosity of composites was examined. These results are in accordance with SEM images which show the microstructure of composites without any delaminations and voids. Such composites exhibit a high initial strength with the ability to sustain large deformations due to combining the ceramic stiffness and rubbery elasticity of elastomer. Static compression tests for the obtained composites were carried out and the energy dissipated during compression was calculated as the area under the stress-strain curve. The dynamic behavior of the composite was investigated using the split Hopkinson pressure bar technique. It was found that ceramic-elastomer composites effectively dissipate the energy. Moreover, a ballistic test was carried out using armor piercing bullets.
Opis fizyczny
Bibliogr. 37, wykr., rys., tab., il.
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St., 02-507 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St., 02-507 Warsaw, Poland
  • Institute of Ceramics and Building Materials, 9 Postępu St., 02-676 Warsaw, Poland
  • Institute of Ceramics and Building Materials, 9 Postępu St., 02-676 Warsaw, Poland
  • [1] N. Chawla and K.K. Chawla, Metal Matrix Composites, Springer Science Business Media, Berlin, 2006.
  • [2] R. Kozera, J. Bieliński, A. Broda, A. Boczkowska, and K.J. Kurzydłowski, “Preparation of carbon fibres for aluminium composites”, Advanced Materials Research 264-265, 1487-1493 (2011).
  • [3] N. Chawla and K.K. Chawla, “Metal-matrix composites in ground transportation”, J. Mater. 11, 64-67 (2006).
  • [4] R. Jhaver and H. Tippur, “Compression response of syntactic foam based interpenetrating phase composites”, Proc. XIth Int.Congress and Exposition 1, CD-ROM (2008).
  • [5] R. Jhaver and H. Tippur, “Processing, compression response and finite element modeling of syntactic foam based interpenetrating phase composites (IPC)”, Mat Sci Eng A-Struct. 499 (1), 507-517 (2009).
  • [6] W. Zając, A. Boczkowska, K. Babski, K.J. Kurzydłowski, and P.P. Deen, “Measurements of residual strains in ceramicelastomer composites with diffuse scattering of polarized neutrons”, Acta Mater. 56 (1), 5964-5971 (2008).
  • [7] K. Babski, A. Boczkowska, and K.J. Kurzydłowski, “Microstructure-properties relationship in ceramic-elastomer composites with 3D connectivity of phases”, J. Mater. Sci. 44 (6), 1456-1451 (2009).
  • [8] L.A. Dobrzański, M. Kremzer, A. Nowak, and A. Nagel, “Aluminium matrix composites fabricated by infiltration method”, Archives of Materials Science and Engineering 36 (1), 5-11 (2009).
  • [9] L.A. Dobrzański, M. Kremzer, A. Nowak, and A. Nagel, “Composite materials based on porous ceramic preform infiltrated by aluminium alloy”, J. Achievements in Materials and Manufacturing Engineering 20 (1-2), 95-98 (2007).
  • [10] J. Binner, H. Chang, and R. Higginson, “Processing of ceramic-metal interpenetrating composites”, J. Eur. Ceram Soc. 29 (5), 837-842 (2009).
  • [11] J. Binner, H. Chang, and R. Higginson, “Microstructure and property characterisation of 3-3 Al(Mg)/AlO interpenetrating composites produced by a pressureless infiltration technique”, J. Mater. Sci. 45 (1), 662-668 (2010).
  • [12] M. Szafran, G. Rokicki, W. Lipiec, K. Konopka, and K. Kurzydłowski, “Porous ceramics infiltrated by metals and polymers”, Composites 2 (1), 5 (2002).
  • [13] K. Konopka, A. Olszowka-Myalska, and M. Szafran, “Ceramic-metal composites with an interpenetrating network”, Mater. Chem. Phys. 81 (2), 329-332 (2003).
  • [14] H. Chen, X. Dong, T. Zeng, Z. Zhou, and H. Yang, “The mechanical and electric properties of infiltrated PZT/polymer composites”, Ceram. Int. 33 (1), 1369-1374 (2007).
  • [15] J.F. Tressler, S. Alkoy, A. Dogan, and R.E. Newnham, “Functional composites for sensors, actuators and transducers”, Compos. Part A-Appl. S. 30 (1), 477-482 (1999).
  • [16] J. Zeschky, F. Goetz-Neunhoeffer, J. Neubauer, S.H. Jason Lo, B. Kummer, M. Scheffler, and P. Greli, “Preceramic polymer derived cellular ceramics”, Compos. Sci. Technol. 63 (1), 2361-2370 (2003).
  • [17] U.F. Vogt, M. Gorbar, P. Dimopoulos-Eggenschwiler, A. Broenstrup, G. Wagner, and P. Colombo, “Improving the properties of ceramic foams by a vacuum infiltration process”, J. Eur. Ceram. Soc. 30 (1), 3005-3011 (2010).
  • [18] K. Konopka, A. Boczkowska, K. Batorski, M. Szafran, and K.J. Kurzydłowski, “Microstructure and properties of novel ceramic-polymer composites”, Mater. Lett. 58 (1), 3857-3862 (2004).
  • [19] S.W. Lam, X.M. Tao, and T.X. Yu, “Comparison of different thermoplastic cellular textile composites on their energy absorption capacity”, Compos. Sci. Technol. 64 (1), 2177-2184 (2004).
  • [20] F. Tarlochan and S. Ramesh, “Composite sandwich structures with nested inserts for energy absorption application”, Compos. Struct. 94 (1), 904-916 (2012).
  • [21] P. Ciao, M. Yang, and F. Bobaru, “Impact mechanics and highenergy absorbing materials: review”, J. Aerospace Engineering 21 (4), 235-248 (2008).
  • [22] E. Medvedovski, “Ballistic performance of armour ceramics: Influence of design and structure. Part 2”, Ceram. Int. 36 (1), 2117-2127 (2010).
  • [23] M. Übeyli, R.O. Yildirim, and B. ¨Ogel, “On the comparison of the ballistic performance of steel and laminated composite armors”, Mater. Design 28 (1), 1257-1262 (2007).
  • [24] J. Lopez-Puente, A. Arias, R. Zaera, and C. Navarro, “The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study”, Int. J. Impact Eng. 32 (1), 321-336 (2005).
  • [25] A.R. Olszyna, Superhard Ceramic,Warsaw University of Technology Publishing House, Warsaw, 2002.
  • [26] PL patent 1990, No. 148671.
  • [27] A. Boczkowska, K. Babski, K. Konopka, and K.J. Kurzydlowski, “Quantitative description of ceramic-elastomer composites with percolation microstructures”, Mater. Charact. 56 (1), 389-393 (2006).
  • [28] K. Konopka, A. Boczkowska, and K.J. Kurzydłowski, “Effect of elastomer structure on ceramic-elastomer composite properties”, J. Mater. Process Tech. 175, 40-44 (2006)
  • [29] M. Szafran, A. Boczkowska, K. Konopka, K.J. Kurzydłowski, G. Rokicki, and K. Batorski, PL patent No. P.353130 (2002).
  • [30] W. Zhihua, M. Hongwei, Z. Longmao, and Y. Guitong, “Studies on the dynamic compressive properties of open-cell aluminum alloy foams”, Scripta Mater. 54 (1), 83-87 (2006).
  • [31] V.F. Steier, C. Koplin, and A. Kailer, “Influence of pressureassisted polymerization on the microstructure and strength of polymer-infiltrated ceramics”, J. Mater. Sci. 48 (8), 3239-3247 (2013).
  • [32] D. Manfredi, M. Pavese, S. Biamino, P. Fino, and C. Badini, “NiAl(Si)/Al2O3 co-continuous composites by double reactive metal penetration into silica performs”, Intermetallics 16 (1), 580-583 (2008).
  • [33] J. Michalski, T. Wejrzanowski, S. Gierlotka, J. Bielinski, K. Konopka, T. Kosmac, and K.J. Kurzydlowski, “The preparation and structural characterization of Al2O3/Ni-P composites with an interpenetrating network”, J. Eur. Ceram Soc. 27 (1), 831-836 (2007).
  • [34] P. Chabera, A. Boczkowska, J. Zych, A. Oziębło, and K.J. Kurzydłowski, “Effect of specific surface fraction of interphase boundaries on mechanical properties of ceramic-metal composites, obtained by pressure infiltration”, Composites 11 (3), 202-207 (2011).
  • [35] P. Chabera, A. Boczkowska, A. Oziębło, Z. Pakieła, and K.J. Kurzydłowski, “Microstructure and mechanical properties of cermic-metal composites obtained by pressure infiltration”, World J. Engineering Supplement (1), 159-160 (2011).
  • [36] E. Medvedovski, “Lightweight ceramic composite armour system”, Adv. Appl. Ceram. 105 (5), 241-245 (2006).
  • [37] M. Übeyli, H. Deniz, T. Demir, B. Ögel, B. Gürel, and Ö. Keles,, “Ballistic impact performance of an armor material consisting of alumina and dual phase steel layers”, Mater. Design 32 (1), 1565-1570 (2011).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.