PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The tribological characteristics of Al-Si/graphite composite

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Charakterystyka tribologiczna kompozytu Al-Si/grafit
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of tribological research on AlSi12CuNiMg/5.7 wt.% Gr aluminium composite material (containing graphite particles in the amount of 5.7% wt.%) and on its matrix. This composite is used as high-tech construction material in the automotive industry, particularly for pistons, cylinder liners, and slide bearings. The tribological properties of these materials can be significantly changed as a result of the introduction of graphite particles. Therefore, wear tests have been carried out using the ball-on-disc tribometer. Microstructure and wear resistance of the matrix and composite alloy have been subjected to comparative analysis. It was demonstrated that the composite reinforced with graphite is characterized by a lower friction coefficient and lower wear in comparison to the matrix.
PL
Artykuł przedstawia wyniki badań tribologicznych aluminiowego materiału kompozytowego AlSi12CuNiMg/5.7 wt.% Gr (zawierającego cząsteczki grafitu w ilości 5,7% wag.) i jego osnowy. Kompozyt ten znajduje zastosowanie jako nowoczesny materiał konstrukcyjny w przemyśle motoryzacyjnym, szczególnie na tłoki, tuleje cylindrowe i łożyska ślizgowe. Wprowadzenie cząstek grafitu znacząco może zmieniać właściwości tribologiczne tych materiałów. W tym celu wykonano testy zużycia na tribometrze typu kula-tarcza. Mikrostruktura i odporność na zużycie stopu osnowy i kompozytu zostały poddane analizie porównawczej. Wykazano, że kompozyt zbrojony grafitem charakteryzuje się mniejszym współczynnikiem tarcia i mniejszym zużyciem w porównaniu z osnową.
Czasopismo
Rocznik
Tom
Strony
97--104
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering, 36 Nadbystrzycka Street, 20-618 Lublin, Poland, m.walczak@pollub.pl
  • Wrocław University of Technology, Faculty of Mechanical Engineering, Institute of Production Engineering and Automation, 5 Łukasiewicza Street, 50-371 Wrocław, Poland, maciej.zwierzchowski@pwr.wroc.pl
autor
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering, 36 Nadbystrzycka Street, 20-618 Lublin, Poland, j.bienias@pollub.pl
autor
  • University of Life Sciences in Lublin, Faculty of Production Engineering, Department of Transporting and Agricultural Machinery, 28 Głęboka Street, 20-612 Lublin, Poland, jacek.caban@up.lublin.pl
Bibliografia
  • 1. Dwivedi D.K., Adhesive wear behaviour of cast aluminium–silicon alloys: Overview, Materials and Design, 31 (5), 2010, 2517–2531.
  • 2. Konečná R., Nicoletto G., Kunz L., Svoboda M., Bača A., Fatigue strength degradation of AlSi12CuNiMg alloy due to high temperature exposure: a structural investigation, Procedia Engineering, 74, 2014, 43–46.
  • 3. Chandrashekharaiah T.M., Kori S.A., Effect of grain refinement and modification on the dry sliding wear behaviour of eutectic Al–Si alloys, Tribology International, 42 (1), 2009, 59–65.
  • 4. Bieniaś J., Walczak M., Surowska B., Sobczak J., Microstructure and corrosion behaviour of aluminium fly ash composites, Journal of Optoelectronics and Advanced Materials, 5 (2), 2003, 493–502.
  • 5. Devaraju A., Kumar A., Kotiveerachari B., Influence of addition of Grp/Al2O3p with SiCp wear properties of aluminum alloy 6061-T6 hybrid composites via friction stir processing, Transactions of Nonferrous Metals Society of China, 23 (5), 2013, 1275−1280.
  • 6. Walczak M., Pieniak D., Zwierzchowski M., The tribological characteristics of SiC particle reinforced aluminium composites, Archives of Civil and Mechanical Engineering, 15 (1), 2015, 116−123.
  • 7. Yang J.B., Lin C.B., Wang T.C., Chu H.Y., The tribological characteristics of A356.2Al alloy/Gr(p) composites, Wear, 257 (9-10), 2004, 941–952.
  • 8. Rohatgi P.K., Cast Metal-Matrix Composites, ASM Handbook. Casting, ASM International, 1992, 1840–1872.
  • 9. Krishnan B.P., Raman N., Narayanaswamy K., Rohatgi P.K., Performance of an Al-Si-graphite particle composite piston in a Diesel engine, Wear, 60 (1), 1980, 205–215.
  • 10. Omrani E., Moghadam A.D., Algazzar M., Menezes P.L., Rohatgi P.K., Effect of graphite particles on improving tribological properties Al-16Si-5Ni-5Graphite self-lubricating composite under fully flooded and starved lubrication conditions for transportation applications, The International Journal of Advanced Manufacturing Technology, 87(1), 2016, 929–939.
  • 11. Riahi A.R., Alpas A.T., The role of tribo-layers on the sliding wear behaviour of graphitic aluminum matrix composites, Wear, 251 (1-12), 2001, 1396–1407.
  • 12. Prabhudeva M.S., Auradi V., Venkateswarlu K., Siddalingswamy N.H., Kori S.A., Influence of Cu addition on dry sliding wear behaviour of A356 alloy. Procedia Engineering, 97, 2014, 1361–1367.
  • 13. Sharma R., Anesh, Dwivedi D.K., Influence of silicon (wt.%) and heat treatment on abrasive wear behaviour of cast Al–Si–Mg alloys, Materials Science and Engineering: A, 408 (1-2), 2005, 274–280.
  • 14. [Mahato A., Verma N., Jayaram V., Biswas S.K., Severe wear of a near eutectic aluminium–silicon alloy, Acta Materialia, 59 (15), 2011, 6069–6082.
  • 15. Rajaram G., Kumaran S., Srinivasa Rao T., Kamaraj M., Studies on high temperature wear and its mechanism of Al–Si/graphite composite under dry sliding conditions, Tribology International, 43 (11), 2010, 2152–2158.
  • 16. Rudnik D., Sobczak J., Wojciechowski A., Pietrzak K., New material solutions in combustion engines, Journal of KONES Internal Combustion Engines, 10 (3-4), 2003, 303–313.
  • 17. PN-76/H-88027, Casting aluminium alloys. Grade. Polish Committee for Standardization, UKD 669.715.018.28, Warsaw, Poland 1976.
  • 18. ASTM G99-95c; Standard test method for wear testing with a Pin-on-Disc apparatus.
  • 19. DIN 50 324; Testing of Friction and Wear.
  • 20. Alemdag Y., Beder M., Microstructural, mechanical and tribological properties of Al-7Si-(0-5)Zn alloys, Materials and Design, 63, 2014, 159-167.
  • 21. Bieniaś J., The anlysis of the infuence of ceramic phase and matrix structure on corrosion resistance of Al-Si composites with dispersed graphite reinforcement [dissertation]. University of Technology, Lublin, 2010.
  • 22. Wang G., Bian X., Wang W., Zhang J., Influence of Cu and minor elements on solution treatment of Al–Si–Cu–Mg cast alloys, Materials Letters, 57 (24-25), 2003, 4083–4087.
  • 23. Sjölander E., Seifeddine S., The heat treatment of Al–Si–Cu–Mg casting alloys, Journal of Materials Processing Technology, 210 (10), 2010, 1249–1259.
  • 24. Ted Guo M.L., Tsao C.-Y.A, Tribological behaviour of self-lubricating aluminium/SiC/graphite hybrid composites synthesized by the semi-solid powder-densification method, Composites Science and Technology, 60 (1), 2000, 65–74.
  • 25. Gibson P.R., Clegg A.J., Das A.A., Wear of cast Al-Si alloys containing graphite, Wear 95 (2), 1984, 193–198.
  • 26. Rohatgi P.K., Ray S., Liu Y., Tribological properties of metal matrix-graphite particle composites, International Materials Reviews, 37 (1), 1992, 129–152.
  • 27. Suh N.P., An overview of theory of wear, Wear, 44 (1), 1977, 1–16.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af5c86ab-b050-4d4b-a93f-98fa2473085f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.