Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Concept of Reliability Measure of Recuperator in Spray Booth

Treść / Zawartość
Warianty tytułu
Koncepcja miary niezawodności rekuperatora kabiny lakierniczej
Języki publikacji
Overspray sediments deposited on the recuperator fins gradually reduce the cross-section of the recuperator channels. The result of this process is the increase in airflow resistance and thermal resistance during heat transfer. Both phenomena have a negative impact on the reliability of the device. This paper presents the concept of recuperator reliability measures. For this purpose, the essential requirement of reliability (indestructibility) was formulated and damage was defined by identifying it with the loss of air flow reserve and reserve of heat transfer efficiency. On this basis ability features of the heat recovery unit were assessed. Limits of features and critical time of recuperator loss of ability were also assessed.
Odkładające się na lamelach rekuperatora osady lakiernicze powodują stopniowe zmniejszanie przekroju poprzecznego kanałów rekuperatora. Skutkiem tego procesu są wzrosty oporów przepływu powietrza oraz oporu termicznego przy wymianie ciepła. Oba zjawiska wpływają negatywnie na niezawodność urządzenia. W artykule przedstawiono koncepcję miary niezawodności rekuperatora. W tym celu sformułowano podstawowe wymaganie niezawodnościowe (nieuszkadzalność) oraz zdefiniowano uszkodzenia utożsamiając je z utratą zapasu strumienia powietrza oraz zapasu efektywności wymiany ciepła. Na tym tle określono cechy zdatności urządzenia, granice ich obszarów oraz krytyczny czas utraty zdatności rekuperatora.
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
  • West Pomeranian University of Technology Szczecin Faculty of Maritime Technology and Transport Al. Piastów 41, 71-065 Szczecin, Poland,
  • West Pomeranian University of Technology Szczecin Faculty of Maritime Technology and Transport Al. Piastów 41, 71-065 Szczecin, Poland,
  • 1. Chan TL, D'Arcy JB, Schreck RM. High-solids paint overspray aerosols in a spray painting booth: particle size analysis and scrubber efficiency. American Industrial Hygiene Association Journal 1986 ;7: 411-417,
  • 2. Chen X, Zhang Z, Zhang Z. Real-time equipment condition assessment for a class-imbalanced dataset based on heterogeneous ensemble learning. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21(1): 68-80,
  • 3. Darvin CH. Fractional penetration of paint overspray arrestors. Project summary, United States Environmental Protection Agency, April 1997, https://permanent.access. websites/epagov/
  • 4. Darvin CH, Cox LS. & Smith D. Comparative Study of Spray Booth Filter System Efficiency, Journal of the Air & Waste Management Association, 1999; 49(3): 339:344,
  • 5. Fang Y, Tao W, Tee KF. A new computational method for structural reliability with big data. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21(1): 159-163,
  • 6. Hassan Al-Haj Ibrahim Fouling in Heat Exchangers, MATLAB - A Fundamental Tool for Scientific Computing and Engineering Applications-2012; 3, Vasilios N. Katsikis, IntechOpen, DOI: 10.5772/46462. Available from:,
  • 7. Howarth JL, Anand SC. Design, development and characterization of a novel and innovative exhaust filter media for the global automotive industry. Textile Research Journa,
  • 8. Kazenski SL, Kinney KA. Biofiltration of paint spray booth emissions: Packing media considerations and VOC interactions, in: Proceedings of the 2000 Annual Meeting and Exhibition of Air and Waste Management Association, June 2000, Salt Lake City, A & WMA, 1-14.
  • 9. Khaniyev T, Baskir MB, Gokpinar F, Mirzayev F. Statistical distributions and reliability functions with type-2 fuzzy parameters. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21(2): 268-274,
  • 10. Kim HT, Jung CH, Oh SN, Lee KW. Particle removal efficiency of gravitational wet scrubber considering diffusion, interception, and impaction, Journal of Environmental Engineering Science 2001; 2: 125-136,
  • 11. Młynarski S, Pilch R, Smolnik M, Szybka J, Wiązania G. A Method for rapid evaluation of k-out-of-n systems reliability. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21 (1): 170-176,
  • 12. Nikończuk P. Study of Heat Recovery in Spray Booths, Metal Finishing 2013; 111(6): 37-39,
  • 13. Nikończuk P. Preliminary analysis of heat recovery efficiency decrease in paint spray booths. Transactions of the Institute of Metal Finishing 2014; 92(5): 235-237,
  • 14. Nikończuk P. Preliminary modeling of overspray particles sedimentation at heat recovery unit in spray booth. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20 (3): 387-393,
  • 15. Nikończuk P, Dobrzyńska R. Preliminary Measurements of Overspray Sediment's Thermal Conductivity. Ochrona przed Korozją 2018; 61 (2): 40-42,
  • 16. Qi B, Moe WM, Kinney KA. Treatment of paint spray booth off-gases in a fungal biofilter. Journal of Environmental Engineering 2005; 2:180-189,
  • 17. Recnagel - Sprenger - Hönmann - Schramek, Ogrzewanie i klimatyzacja, Poradnik, Wydanie 1, EWFE, Gdańsk 1994.
  • 18. Ron J. Ventilation and paint filtration requirements for spray booths. Metal Finishing 2007; 105 (6), 82-84,
  • 19. Rosochacki W. Basis of reliability model for offshore structures bearing. Scientific Journals Maritime University of Szczecin, 2009; 19 (91): 92-96.
  • 20. Sabty-Daily RA, Hinds WC., Froines J. Size distribution of chromate paint aerosol generated in a bench-scale spray booth. The Annals of Occupational Hygiene 2005; (1): 33-45.
  • 21. Salaimeh AA, Adornato A, Akafuah NK, Saito K. Assessment of Spray Envelope Using Droplet Breakup Regime and Mechanisms. ICLASS 2015, 13th Triennial International Conference on Liquid Atomization and Spray Systems, Tainan, Taiwan, August 23-2 2015.
  • 22. Schweizer R. Technological Advancements in Overspray Collectors. Metal Finishing, 2010; 108(4): 38-45,
  • 23. Settles GS, Miller JD, Hartranft TJ, Brandt AD. Visualization and collection of overspray from airless spray painting. In: 8th International Symposium on Flow Visualization, Sorrento, Italy 1998.
  • 24. Webster TS, Tongna AP, Guarini WJ, McKnight L. Treatment of volatile organic compound emissions from a paint spray booth application using biological trickling filtration. In: 2000 USC-TRG Conference on Biofiltration (an air pollution control technology), Los Angeles, California, USA, October 2000, University of Southern California, Reynolds Group, 41-50.
  • 25. Wiechuła BM. The assessment of explosion risk in cabins during spraying coating powder. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2005; 7 (25): 3-15.
  • 26. Wright SR, Bond JH. Hazardous waste Minimization of paint overspray via medialess dynamic particle filtration. Final Report 25 Apr 97 -25 Jan 98, INNOVATECH, INC.
  • 27. Zhang Y, Ma Y, Ouya ng L, Liu L. A novel reliability model for multi-component systems subject to multiple dependent competing risks with degradation rate acceleration. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20 (4): 579-589,
  • 28. Archiwum firmy Techniki systemów Aplikacyjnych Sp. z o.o.
  • 29. Coating plants - Spray booths for application of organic liquid coating materials - Safety requirements, European Standard, Final Draft, EN 12215, June 2004.
  • 30. Guideline for Spray Finishing Particulate Recommended Practice, Virginia Beach VA, National Air Filtration Association, 2012, FinishingParticulateFiltrationa.pdf, dostęp: 11.05.2015.
  • 31. Guidance on the application of the dangerous substances and explosive atmospheres regulations (DSEAR) 2002 to motor vehicle repair (MVR), Health and Safety Executive, Information Document HSE, 2002, 803/71,, dostęp: 04.12.2015.
  • 32. Occupational safety and health act 1984 and occupational safety and health regulations 1996, Code of practice spray painting, West Perth, Australia WorkSafe Western Australia Commission, June 2009,, dostęp: 24.03.2016.
  • 33. Spray coating a guide to the spray coating regulations 1962, Wellington, New Zealand, Occupational Safety and Health Service, Department of Labour, 1962, July 2013, http:// legislation.
  • 34. United States Environmental Protection Agency (USEPA), National emission standards for hazardous air pollutants: Surface coating of miscellaneous metal parts and products; Final rule, Federal Register 69 (1), January 2, 2004, 130-192,
  • 35. United States Environmental Protection Agency (USEPA), Regulatory impact analysis for the proposed automobile and light duty truck coating NESHAP: Final Report, EPA-452/R-01-013, North Carolina, USEPA, Research Triangle Park, N.C., 2002.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.