Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Semilinear functional differential equations of fractional order with state-dependent delay

Warianty tytułu
Języki publikacji
In this paper we provide sufficient conditions for the existence and uniqueness of mild solutions for a class of semilinear functional differential equations of fractional order with state-dependent delay. The nonlinear alternative of Frigon- Granas type for contractions maps in Fr´echet spaces combined with -resolvent family is the main tool in our analysis.
Opis fizyczny
Bibliogr. 29 poz.
  • Laboratory of mathematics, University of Sidi Bel Abbes PO Box 89, 22000 Sidi Bel Abbes, Algeria
  • Département de mathématiques et informatique, Universit de Saida 20000, Saida, Algérie
  • Département de Mathématiques, Faculté des Sciences, Semlalia B.P.2390, Marrakech, Morocco
  • [1] S. Abbas, M. Benchohra and G.M. N’Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.
  • [2] M. Adimy and K. Ezzinbi, The basic theory of abstract semilnear functional differntial equations with nondense domain, in ”Delay Differential Equations with Applications”, ed by O. Arino, M. L. Hbid and E. Ait Dads, NATO Science Series q: Mathematics, Physics and Chemistry, Vol.205, (2006), Springer, Berlin, pp.347-407.
  • [3] R. P. Agarwal, M. Belmekki, M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Difference Equ, 9.46 pages.ID 981728.
  • [4] E. Ait Dads and K. Ezzinbi, Boundedness and almost periodicity for some state-dependent delay differential equations, Electron. J. Differential Equations. 2002,(67), 13pp.
  • [5] W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, 96, Birkhauser, Basel, 2001.
  • [6] S. Baghli, M. Benchohra, J. J. Nieto, Global uniqueness results for partial functional and neutral functional evolution equations with state-dependent delay. J. Advanced Reas. Differ. Equ. 2 (3) (2010), 35-52.
  • [7] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific, New York, 2012.
  • [8] J. Bélair, Population models with state-dependent delays. Lect. Notes Pure Appl. Math., Dekker, New York, 131 (1990) 165-176.
  • [9] J. Bélair and M.C. Mackey, Consumer memory and price fluctuations on commodity markets: An integrodifferential model. J. Dynam. Differential Equations 1 (1989), 299-325.
  • [10] M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab; Existence results for functional differential equations of fractional order with infinite delay, J. Math. Anal. Appl. 338 (2008), 1340-1350.
  • [11] J. V. Devi, V. Lakshmikantham, Nonsmooth and fractional differential equations, Nonlinear Anal. 70 (2009), 4151-4157.
  • [12] R.D. Driver, and M.J. Norris, Note on uniqueness for a one-dimensional two- body problem of classical electrodynamics. Ann. Phys. 42 (1967), 347-351.
  • [13] K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathemaics,194, Springer-Verlag, New York, 2000.
  • [14] M. Frigon and A. Granas, Résultat de type Leray-Schauder pour des contractions sur des espaces de Fréchet, Ann. Sci. Math. Québec 22(1998), 161-168.
  • [15] J. Hale, J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11-41.
  • [16] E. Hernandez, R. Satkhivel and S. Tanaka Aki, Existence results for impulsive evolution differential equations with state-dependent delay, Electron. J. Differential Equations, 2008(28),1-11.
  • [17] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • [18] Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Unbounded Delay. Springer-Verlag, Berlin, 1991.
  • [19] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. ELsevier Science B.V. Amsterdam, 2006.
  • [20] V. Lakshmikantham, S. Leela, J. Vasundhara. Theory of Dynamic Systems. Cambridge Academic Publishers, Cambridge, 2009.
  • [21] C. Lizama, Regularized solutions for abstract Volterra equations, J. Math. Anal. Appl. 243 (2000), 278-292.
  • [22] K. Li, J. Peng, Fractional resolvents and fractional evolution equations, Appl. Math. Lett. 25 (2012), 808-812.
  • [23] M.C. Mackey, Commodity price fluctuations: price dependent delays and non- linearities as explanatory factors. J. Econ. Theory 48 (1989), 497-509.
  • [24] M.C. Mackey, and J. Milton, Feedback delays and the origin of blood cell dynamics, Comm. Theor. Biol. 1 (1990), 299-327.
  • [25] G. M. Mophou and G. M. N’Guérékata, Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay, Appl. Math. Comput. 216(2010), 61-69.
  • [26] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [27] J. Prüss, Evolutionnary Integral Equations and Applications, Monographs Math.87, Birkhauser Verlag, 1993.
  • [28] V. E. Tarasov, Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg, 2010.
  • [29] K. Yosida, Functional Analysis 6th edn. Springer-Verlag, Berlin, 1980.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.