Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Acta of Bioengineering and Biomechanics

Tytuł artykułu

Investigation of Chest Injury Mechanism Caused by Different Seatbelt Loads in Frontal Impact

Autorzy Xiao, S.  Yang, J.  Crandall, J. R. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The purpose of this quantitative study is to investigate the differences of the injury mechanism caused by two different types of seatbelts loads on the occupant chest. Methods: The finite element analysis is employed to compare the different responses of the human body model, including the comparison of kinematics, chest accelerations, seatbelt forces and chest injury outcomes regrading chest deflections and rib fractures. Results: The calculated rib strain/stress from simulations in force-limiting seatbelt are higher than that in the regular seatbelt. The forward movement and torso twist are both great in simulations with force-limiting seatbelt. Meanwhile, there are obvious differences in the injury outcomes of chest deflections and rib fracture risks under the different seatbelt loads. Conclusion: Results indicate the chest deflections and rib fracture risks are negatively correlated under the load of the force-limiting seatbelt, However, they are positively correlated to and determined by the seatbelt peak load of the regular seatbelt. This paper can provide a reference for study of the chest injury mechanism and the protection efficiency of seatbelt.
Słowa kluczowe
PL model ciała człowieka   FEM   kinematyka   klatka piersiowa  
EN seatbelt restraint system   human body finite element model   kinematics   rib fractures   chest deflections  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 3
Strony 53--62
Opis fizyczny Bibliogr. 31 poz., rys., tab., wykr.
autor Xiao, S.
  • The State Key Laboratory of Advanced Design & Manufacturing for Vehicle Body, Hunan University, Changsha, China,
autor Yang, J.
  • The State Key Laboratory of Advanced Design & Manufacturing for Vehicle Body, Hunan University, Changsha, China
  • Department of Applied Mechanics, Chalmers, University of Technology, Gothenburg, Sweden
autor Crandall, J. R.
  • Center for Applied Biomechanics, University of Virginia, Charlottesville, USA
[1] Baker S.P., O'Neill B., Haddon Jr W., Long W.B., The Injury Severity Score: A Method for Describing Patients with Multiple Injuries and Evaluating Emergency Care, Journal of Trauma and Acute Care Surgery, 1974, 14(3): 187-196.
[2] Bostrom O., Haland Y., Bostrom O., Hanland Y., Benefits of a 3+2-Point Belt System and an Inboard Torso Side Support in Frontal, Far-Side and Rollover Crashes, International Journal of Vehicle Safety, 2005, 1(1/2/3).
[3] Crandall J.R., Bose D., Forman J., Untaroiu C.D., Arregui‐Dalmases C., Shaw G., Human Surrogates for Injury Biomechanics Research, Clinical Anatomy, 2011, 24,362-371.
[4] Evans L., Airbag Effectiveness in Preventing Fatalities Predicted According to Type of Crash, Driver Age, and Blood Alcohol Concentration, 33rd Annual Proceedings of the Association for the Advancement of Automotive Medicine, Des Plaines, IL, 1989.
[5] Forman J.L., Kent R.W., Mroz K., Pipkorn B., Bostrom O., Segui-Gomez M., Predicting Rib Fracture Risk with Whole-Body Finite Element Models: Development and Preliminary Evaluation of a Probabilistic Analytical Framework, Annals of Advances in Automotive Medicine, 2012, 56: 109-124.
[6] Gayzik F.S., Moreno D.P., Vavalle N.A., Rhyne A.C., Stitzel J.D., Development of the Global Human Body Models Consortium Mid-Sized Male Full Body Model, International Workshop on Human Subjects for Biomechanical Research, 39, National Highway Traffic Safety Administration, US DOT, 2011.
[7] GHBMC LLc, GHBMC_M50-O_v4-2_Manual. 2014.
[8] Kemper A.R., McNally C., Kennedy E.A., Manoogian S.J., Rath A.L., Ng T.P., Stitzel J.D., Smith E.P., Duma S.M., Matsuoka F., Material Properties of Human Rib Cortical Bone from Dynamic Tension Coupon Testing, Stapp Car Crash J, 2005, 49,199-230.
[9] Kemper A.R., McNally C., Pullins C.A., Freeman L.J., Duma S.M., Rouhana S.M., The Biomechanics of Human Ribs: Material and Structural Properties from Dynamic Tension and Bending Tests, Stapp Car Crash J, 2007, 51,235-273.
[10] Kent R., Lessley D., Sherwood C., Thoracic Response Corridors for Diagonal Belt, Distributed, Four-Point Belt, and Hub Load, Stapp Car Crash Journal, 2004, 48: 495-519.
[11] Kent R., Patrie J., Chest Deflection Tolerance to Blunt Anterior Load Is Sensitive to Age but Not Load Distribution, Forensic Science International, 2005, 149(s 2–3), 121-128.
[12] Kent R.W., Sherwood C.P., Lessley D.J., Overby B., Matsuoka F., Age-related Changes in the Effective Stiffness of the Human Thorax Using Four Load Conditions, IRCOBI Conference on the Biomechanics of Impact, 2003.
[13] Li Z., Kindig M.W., Kerrigan J.R., Untaroiu C.D., Subit D., Crandall J.R., Kent R.W., Rib Fractures Under Anterior-Posterior Dynamic Loads: Experimental and Finite Element Study, Journal of Biomechanics, 2010, 43:228–234.
[14] Li Z., Kindig M.W., Subit D., Kent R.W., Influence of Mesh Density, Cortical Thickness and Material Properties on Human Rib Fracture Prediction, Medical Engineering & Physics, 2010, 32:998–1008.
[15] Mordaka J., Meijer R., Rooij L.V., Zmijewska A., Validation of a finite Element Human Model for Prediction of Rib Fractures, Proceedings of SAE World Congress & Exhibition Detroit, US: SAE, 2007, Paper 200701-1161.
[16] Murakami D., Kobayashi S., Torigaki T., Kent R., Finite Element Analysis of Hard and Soft Tissue Contributions to Thoracic Response: Sensitivity Analysis of Fluctuations in Boundary Conditions, Stapp Car Crash Journal, 2006, 50(2006-22- 0008): 169-189.
[17] Nahum A.M., Melvin J.W., Accidental Injury: Biomechanics and Prevention, 2nd Edition, New York: Springer-Veriag Inc. 2002.
[18] National Bureau of Statistics of the People's Republic of China, Statistical Communiqué of the People's Republic of China on the 2015 National Economic and Social Development, 2016, 02/29/content_5047274.htm. Accessed 30 June 2016.
[19] Nirula R., Pintar F.A., Identification of Vehicle Components Associated with Severe Thoracic Injury in Motor Vehicle Crashes: A CIREN and NASS Analysis, Accident Analysis & Prevention, 2008, 40(1): 137-141.
[20] Park G., Kim T., Crandall J.R., Arregui-Dalmases C., Luzon-Narro J., Comparison of Kinematics of GHBMC to PMHS on the Side Impact Condition, 2013 IRCOBI Conference, Gothenburg, 2013.
[21] Park G., Kim T., Panzer M.B., Crandall J.R., Validation of Shoulder Response of Human Body Finite-Element Model (GHBMC) Under Whole Body Lateral Impact Condition, Annals of Biomedical Engineering, 2016, 1-19.
[22] Pezowicz C., Głowacki M., The Mechanical Properties of Human Ribs in Young Adult, Acta of Bioengineering & Biomechanics, 2012, 14(2), 53-60.
[23] Plank G.R., Kleinberger M., Eppinger R.H., Analytical Investigation of Driver Thoracic Response to Out of Position Airbag Deployment, Stapp Car Crash J, 1998, 42: 317-329.
[24] Rangarajan N., Fournier E., Dalmotas D., Rhule D., Pritz H., Eppinger R., Haffner M.P., Fullerton J., Beach D., Shams T., White R., Design and Performance of the THOR Advanced Frontal Crash Test Dummy Thorax and Abdomen Assemblies, International Technical Conference on the Enhanced Safety of Vehicles (ESV), 1998, 16.
[25] Shaw C.G., Parent D.P., Purtsezov S., Lessley D., Crandall J., Kent R., Guillemot H., Ridella S.A., Takhounts E., Martin P., Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation Patterns Under Shoulder Seatbelt Load, Stapp Car Crash Journal, 2009, 53(2009-22-0001): 1-48.
[26] Shin J., Untaroiu C., Lessley D., Crandall J., Thoracic Response to Shoulder Belt Load: Investigation of Chest Stiffness and Longitudinal Strain Pattern of Ribs, SAE, 2009, Technical Paper 2009-01-0384, doi:10.4271/2009-01-0384.
[27] Wang F., Yang J.K., Miller K., Li G., Joldes G.R., Doyle B., Wittek A., Numerical Investigations of Rib Fracture Failure Models in Different Dynamic Load Conditions, Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19(5), 527- 537.
[28] Xiao S., Forman J., Yang J., Panzer M., Nie B., Xiao Z., Crandall J., A Study of the Influence between Regular and Force-limiting Seatbelt on Chest Outcome with Human Body Model in Frontal Impact Tests, 2015 The International Forum of Automotive Traffic Safety, Xiamen, China, 2015.
[29] Xiao S., Yang J., Forman J., Panzer M., Xiao Z., Crandall J. Effect of Contact Friction between Seatbelt and Human Body Model on Simulation of Rib Fracture in Frontal Impact, Eighth International Conference on Measuring Technology and Mechatronics Automation. 2016: 255-257.
[30] Xiao S., Yang J.K., Xiao Z., Crandall J.R., Analysis of Chest Injury in Frontal Impact via Finite Element Modelling Based on Biomechanical Experiment. Chinese Journal of Theoretical and Applied Mechanics. 2017, 49(1).
[31] Zhou Q., Rouhana S., Melvin J., Age Effects on Thoracic Injury Tolerance, Society of Automotive Engineers, Warrendale, PA, 1996, Paper 962421.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-ae6cf310-53f3-4d80-a948-3067301edba1
DOI 10.5277//ABB-00777-2016-02