Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat transfer in Darcy-Forchheimer flow of tangent hyperbolic fluid over an inclined plate with Joule heating

Treść / Zawartość
Warianty tytułu
Języki publikacji
Tangent hyperbolic fluid is one of the non-Newtonian fluids in which the constitutive equation is valid for low and high shear rates and used mostly in laboratory experiments and industries. The Darcy-Forchheimer flow model is substantial in the fields where the high flow rate effect is the common phenomenon, for instance, in petroleum engineering. With these things in mind, in this article, we analysed the mixed convective dissipative Darcy-Forchheimer flow of tangent hyperbolic fluid by an inclined plate with Joule heating. Flow administering equations were altered as nonlinear ODEs and then resolved using shooting strategy. Pertinent outcomes are explained through graphs. It is discovered that fluid velocity minifies with the rise in the power law index parameter and Forchheimer number. It is detected that the thermal buoyancy parameter minimizes fluid temperature, and the magnetic field parameter ameliorates the same. What’s more, we noticed that Forchheimer number minimizes the skin friction coefficient, and the heat transfer rate is minified with the larger Eckert number. Furthermore, we have verified our results with former results for the Nusselt number and noticed a satisfactory agreement.
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
  • Research Scholar, Department of Mathematics, JNTUH College of Engineering, JNTU Kukatpally Hyderabad – 500085, Telangana, India
  • Department of Mathematics, Matrusri Engineering College, Saidabad, Hyderabad – 500059 Telangana, India
  • Department of Mathematics, Matrusri Engineering College, Saidabad, Hyderabad – 500059 Telangana, India
  • Department of Mathematics, JNTUH College of Engineering, JNTU Kukatpally, Hyderabad – 500085, Telangana, India
  • [1] Khader, M.M. (2019). Fourth-order predictor-corrector FDM for the effect of viscous dissipation and Joule heating on the Newtonian fluid flow. Computers & Fluids, 182, 9-14.
  • [2] Patel, H.R., & Singh, R. (2019). Thermophoresis, Brownian motion and non-linear thermal radiation effects on mixed convection MHD micropolar fluid flow due to nonlinear stretched sheet in porous medium with viscous dissipation, joule heating and convective boundary condition. International Communications in Heat and Mass Transfer, 107, 68-92.
  • [3] Mittal, A.S., Patel, H.R., & Darji, R.R. (2019). Mixed convection micropolar ferrofluid flow with viscous dissipation, joule heating and convective boundary conditions. International Communications in Heat and Mass Transfer, 108, 104320.
  • [4] Shamshuddin, M., Mishra, S.R., Bég, O.A., & Kadir, A. (2019). Viscous dissipation and joule heating effects in non-Fourier MHD squeezing flow, heat and mass transfer between Riga plates with thermal radiation: variational parameter method solutions. Arabian Journal for Science and Engineering, 44(9), 8053-8066.
  • [5] Waqas, M., Dogonchi, A.S., Shehzad, S.A., Khan, M.I., Hayat, T., & Alsaedi, A. (2020). Nonlinear convection and joule heating impacts in magneto-thixotropic nanofluid stratified flow by convectively heated variable thicked surface. Journal of Molecular Liquids, 300, 111945.
  • [6] Kumar, A., Tripathi, R., Singh, R., & Chaurasiya, V.K. (2020). Simultaneous effects of nonlinear thermal radiation and Joule heating on the flow of Williamson nanofluid with entropy generation. Physica A: Statistical Mechanics and its Applications, 551, 123972.
  • [7] Devi, S., & Sharma, M.K. (2020). MHD Boundary layer flow over a cone embedded in porous media with Joule heating and viscous dissipation. Defect and Diffusion Forum, 401, 131-139.
  • [8] Alaidrous, A.A., & Eid, M.R. (2020). 3-D electromagnetic radiative non-Newtonian nanofluid flow with Joule heating and higher-order reactions in porous materials. Scientific Reports, 10(1), 1-19.
  • [9] Gayatri, M., Reddy, K.J., & Babu, M.J. (2020). Slip flow of Carreau fluid over a slendering stretching sheet with viscous dissipation and Joule heating. SN Applied Sciences, 2(3), 1-11.
  • [10] Shoaib, M., Raja, M.A.Z., Sabir, M.T., Awais, M., Islam, S., Shah, Z., & Kumam, P. (2021). Numerical analysis of 3-D MHD hybrid nanofluid over a rotational disk in presence of thermal radiation with Joule heating and viscous dissipation effects using Lobatto IIIA technique. Alexandria Engineering Journal, 60(4), 3605-3619.
  • [11] Khan, M.I., Waqas, M., Hayat, T., & Alsaedi, A. (2017). A comparative study of Casson fluid with homogeneous-heterogeneous reactions. Journal of Colloid and Interface Science, 498, 85-90.
  • [12] Nayak, M.K., Hakeem, A.A., Ganga, B., Khan, M.I., Waqas, M., & Makinde, O.D. (2020). Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: a combined approach to good absorber of solar energy and intensification of heat transport. Computer Methods and Programs in Biomedicine, 186, 105131.
  • [13] Khan, M.I., & Alzahrani, F. (2020). Entropy-optimized dissipative flow of Carreau-Yasuda fluid with radiative heat flux and chemical reaction. The European Physical Journal Plus, 135(6), 1-16.
  • [14] Khan, M.I., Qayyum, S., Kadry, S., Khan, W.A., & Abbas, S.Z. (2020). Irreversibility analysis and heat transport in squeezing nanoliquid flow of non-Newtonian (second-grade) fluid between infinite plates with activation energy. Arabian Journal for Science and Engineering, 45(6), 4939-4947.
  • [15] Ijaz Khan, M., & Alzahrani, F. (2020). Activation energy and binary chemical reaction effect in nonlinear thermal radiative stagnation point flow of Walter-B nanofluid: Numerical computations. International Journal of Modern Physics B, 34(13), 2050132.
  • [16] Khan, M.I., & Alzahrani, F. (2020). Binary chemical reaction with activation energy in dissipative flow of non‐Newtonian nanomaterial. Journal of Theoretical and Computational Chemistry, 19(03), 2040006.
  • [17] Khan, M.I., & Alzahrani, F. (2020). Transportation of heat through Cattaneo-Christov heat flux model in non-Newtonian fluid subject to internal resistance of particles. Applied Mathematics and Mechanics, 41(8), 1157-1166.
  • [18] Khan, M.I., & Alzahrani, F. (2021). Nonlinear dissipative slip flow of Jeffrey nanomaterial towards a curved surface with entropy generation and activation energy. Mathematics and Computers in Simulation, 185, 47-61.
  • [19] Ibrahim, M., & Khan, M.I. (2020). Mathematical modeling and analysis of SWCNT-Water and MWCNT-Water flow over a stretchable sheet. Computer methods and programs in biomedicine, 187, 105222.
  • [20] Ijaz Khan, M., & Alzahrani, F. (2020). Entropy optimized magnetohydrodynamics Darcy-Forchheimer second order velocity slip flow of nanomaterials between two stretchable disks. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(21), 4190-4199.
  • [21] Khan, M.I. (2021). Transportation of hybrid nanoparticles in forced convective Darcy-Forchheimer flow by a rotating disk. International Communications in Heat and Mass Transfer, 122, 105177.
  • [22] Khan, M.I., & Alzahrani, F. (2021). Free convection and radiation effects in nanofluid (silicon dioxide and molybdenum disulfide) with second order velocity slip, entropy generation, Darcy-Forchheimer porous medium. International Journal of Hydrogen Energy, 46(1), 1362-1369.
  • [23] Khan, M.I., & Alzahrani, F. (2021). Dynamics of activation energy and nonlinear mixed convection in Darcy-Forchheimer radiated flow of Carreau nanofluid near stagnation point region. Journal of Thermal Science and Engineering Applications, 13(5), 051009.
  • [24] Akbar, N.S., Nadeem, S., Haq, R.U., & Khan, Z.H. (2013). Numerical solutions of magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian Journal of Physics, 87(11), 1121-1124.
  • [25] Alam, M.S., Rahman, M.M., & Sattar, M.A. (2009). On the effectiveness of viscous dissipation and Joule heating on steady magnetohydrodynamic heat and mass transfer flow over an inclined radiate isothermal permeable surface in the presence of thermophoresis. Communications in Nonlinear Science and Numerical Simulation, 14(5), 2132-2143.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.