Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of pullout strength in different designs of pedicle screws for osteoporotic bone quality using finite element analysis

Treść / Zawartość
Warianty tytułu
Języki publikacji
The purpose of this study was to investigate pullout strength of three types of pedicle screws with and without cement augmentation in osteoporotic bone using finite element analysis. Methods: Twelve 3D finite element models were created to investigate the effect of pullout strength when comparing between pedicle screw types and bone cement clouds. The bottom side of bone block model was constrained and U-shape head was applied 1 mm in direction of longitudinal axis of pedicle screw to perform pullout resistance. The material properties of the FEA was set as linear elastic, homogenous, isotropic condition. The element sensitivity of convergence testing has been performed and variation of the sequential analytical results was less than 3%. Results: The results showed that the maximum total reaction force (133.8 N) was detected in the model of cannulated pedicle screw combined with a central pin with 4 ml cement augmentation, but, in contrast, the minimum total reaction force (106.8 N) was discovered in the model of cannulated pedicle screw without cement. A strong relationship (r = 0.9626) is found in comparison with the biomechanical results between pullout strength of sawbone testing and reaction forces of the FEA. Conclusions: The study concludes that the cannulated pedicle screw can not only provide an inner guider for cement flow and increase bending resistance (deflection effect) when a central pin is selected, but also can improve the pullout strength in the osteoporotic bone to add cement augmentation. The design of the cannulated pedicle screw is suggested for poor bone quality to change pullout failure.
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
  • Department of Orthopedic Surgery, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan,
  • Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
  • Department of Orthopedic Surgery, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan
  • [1] BURVAL D.J., MCLAIN R.F., MILKS R., INCEOGLU S., Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength, Spine, 2007, 32 (10), 1077–1083.
  • [2] CHEN L.H., TAI C.L., LAI P.L., LEE D.M., TSAI T.T., FU T.S., NIU C.C., CHEN W.J., Pullout strength for cannulated pedicle screws with bone cement augmentation in severely osteoporotic bone: Influences of radial hole and pilot hole tapping, Clin. Biomech., 2009, 24 (8), 613–618.
  • [3] CUNNINGHAM B.W., SEFTER J.C., SHONO Y., MCAFEE P.C., Static and cyclical biomechanical analysis of pedicle screw spinal constructs, Spine, 1993, 18 (12), 1677–1688.
  • [4] CHAO C.K., HSU C.C., WANG J.L., LIN J., Increasing Bending Strength and Pullout Strength in Conical Pedicle Screws: Biomechanical Tests and Finite Element Analyses, J. Spinal Disord. Tech., 2008, 21 (2), 130–138.
  • [5] CHEN S.I., LIN R.M., CHANG C.H., Biomechanical investigation of pedicle screw-vertebrae complex: a finite element approach using bonded and contact interface conditions, Med. Eng. Phys., 2003, 25 (4), 275–282.
  • [6] DICK W., KLUGER P., MAGERL F., WOERSDORFER O., ZACH G., A new device for internal fixation of thoracolumbar and lumbar spine fractures: the “fixateur interne”, Paraplegia, 1985, 23 (4), 225–232.
  • [7] GAINES R.W., The use of pedicle-screw internal fixation for the operative treatment of spinal disorders, J. Bone Joint Surg., 2000, 82 (10), 1458–1476.
  • [8] GAO M.X., LEI W., WU Z.X., LIU D., SHI L., Biomechanical evaluation of fixation strength of conventional and expansive pedicle screws with or without calcium based cement augmentation, Clin. Biomech., 2011, 26 (3), 238–244.
  • [9] LIN J.M., LANE J.M., Osteoporosis:a review, Clin. Orthop. Rel. Res., 2004, 425, 126–134.
  • [10] LOEFFEL M., FERGUSON S.J., NOLTE L.P., KOWAL J.H., Vertebroplasty: Experimental Characterization of Polymethylmethacrylate Bone Cement Spreading as a Function of Viscosity, Bone Porosity and Flow Rate, Spine, 2008, 33 (12), 1352–1359.
  • [11] MELTON L.J., Epidemiology of spinal osteoporosis, Spine, 1997, 22 (24), 2S–11S.
  • [12] MELTON L.J., LANE A.W., COOPER C., EASTELL R., O’FALLON W.M., RIGGS B.L., Prevalence and incidence of vertebral deformities, Osteoporosis Int., 1993, 3 (3), 113–119.
  • [13] MASFERRER R., GOMEZ C.H., KARAHALIOS D.G., SONNTAG V.K., Efficacy of pedicle screw fixation in the treatment of spinal instability and failed back surgery: a 5-year review, J. Neurosurg., 1998, 5 (1), 371–377.
  • [14] O’NEILL T.W., FELSENBERG D., VARLOW J., COOPER C., KANIS J.A., SILMAN A.J., The prevalence of vertebral deformity in european men and women: the European Vertebral Osteoporosis Study, J. Bone Miner. Res., 1996, 11 (7), 1010–1018.
  • [15] OKUYAMA K., ABE E., SUZUKI T., TAMURA Y., CHIBA M., SATO K., Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients, Spine J., 2001, 1 (6), 402–407.
  • [16] PEZOWICZ C., FILIPIAK J., Influence of loading history on the cervical screw pullout strength value, Acta Bioeng. Biomech., 2009, 11 (3), 35–40.
  • [17] PATWARDHAN A.G., HAVEY R.M., CARANDANG G., SIMONDS J., VORONOV L.I., GHANAYEM A.J., MEADE K.P., GAVIN T.M., PAXINOS O., Effect of compressive follower preload on the flexion-extension response of the human lumbar spine, J. Orthop. Res., 2003, 21 (3), 540–546.
  • [18] PFEIFFER F.M., CHOMA T.J., KUENY R., Finite element analysis of Stryker Xia pedicle screw in artificial bone samples with and without supplemental cement augmentation, Comput. Method Biomech. Biomed. Eng., 2015, 18 (13), 1459–1467.
  • [19] ROY-CAMILLE R., SAILLANT G., MAZEL C., Internal fixation of the lumbar spine with pedicle screw plating, Clin. Orthop. Rel. Res., 1986, 203, 7–17.
  • [20] ROHMILLER M.T., SCHWALM D., GLATTES R.C., ELALAYLI T.G., SPENGLER D.M., Evaluation of calcium sulfate paste for augmentation of lumbar pedicle screw pullout strength, Spine J., 2002, 2 (4), 255–260.
  • [21] SUK S.I., KIM W.J., LEE S.M., KIM J.H., CHUNG E.R., Thoracic pedicle screw fixation in spinal deformities: are they really safe?, Spine, 2001, 26 (18), 2049–2057.
  • [22] TSUANG F.Y., CHEN C.H., WU L.C., KUO Y.J., LIN S.C., CHIANG C.J., Biomechanical arrangement of threaded and unthreaded portions providing holding power of transpedicular screw fixation, Clin. Biomech., 2016, 39, 71–76.
  • [23] VARGHESE V., KUMAR G.S., VENKATESH K., A Finite Element Analysis Based Sensitivity Studies on Pull Out Strength of Pedicle Screw in Synthetic Osteoporotic Bone Models, Proceedings of the IEEE EMBS Conference on Biomedical Engineering and Sciences 2016, Dec. 3–6, Kuching, Sarawak, Malaysia, 2016, 382–387.
  • [24] WU C.H., KAO Y.H., YANG S.C., FU T.S., LAI P.L., CHEN W.J., Supplementary pedicle screw fixation in spinal fusion for degenerative spondylolisthesis in patients aged 65 and over: outcome after a minimum of 2 years follow-up in 82 patients, Acta Orthop., 2008, 79 (1), 67–73.
  • [25] WU Z.X., GAO M.X., SANG H.X., MA Z.S., CUI G., ZHANG Y., LEI W., Surgical treatment of osteoporotic thoracolumbar compressive fractures with open vertebral cement augmentation of expandable pedicle screw fixation: a biomechanical study and a 2-year follow-up of 20 patients, J. Surg. Res., 2012, 173 (1), 91–98.
  • [26] WANG W.H., BARAN G.R., GARG H., BETZ R.R., MOUMENE M., CAHILL P.J., The Benefits of Cement Augmentation of Pedicle Screw Fixation Are Increased in Osteoporotic Bone: A Finite Element Analysis, Spine Deformi., 2014, 2 (4), 248–259.
  • [27] YANG S.C., LIU P.H., TU Y.K., Pullout evaluation of sawbone experiment in different types of pedicle screws combined with bone cement augmentation for severe osteoporotic spine, Acta Bioeng. Biomech., 2018, 20 (2), 55–64.
  • [28] ZDERO R., SCHEMITSCH E.H., The Effect of Screw Pullout Rate on Screw Purchase in Synthetic Cancellous Bone, J. Biomech. Eng., 2008, 131 (2), 024501-024501-5, DOI: 10.1115/1.3005344.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.