Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-abac8c91-a909-467e-a3a0-f90a045ecb37

Czasopismo

Engineering of Biomaterials

Tytuł artykułu

Impact of sintering temperature of hydroxyapatite on biological and physicochemical properties of alginate/HA biomaterials for regenerative medicine applications

Autorzy Kazimierczak, P.  Syta, E.  Sochan, J.  Ginalska, G.  Przekora, A. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Synthetic hydroxyapatite (HA) has gained considerable attention in regenerative medicine over recent decades. It is widely used as a bone filler and constituent of various biomaterials. HA possesses high biocompatibility, osteoconductivity, bioactivity, and bioresorbability. There are many different synthesis methods for HA described in the available literature. It is worth noticing that even slight changes in pH, reaction conditions or chemical composition during synthesis, can influence biological, physicochemical, and mechanical properties of resultant HA. The aim of this study was to evaluate the impact of sintering temperature of hydroxyapatite on biological and physicochemical properties of biomaterial made of alginate and hydroxyapatite granules. Alginate/HA material was produced using HA sintered at temperature of 800oC and HA sintered at temperature of 1150oC. Microstructure of the fabricated biomaterials was visualized by SEM. Osteoblast growth on the composites was assessed using human foetal osteoblast cell line. Moreover, ion reactivity, plasma/serum protein adsorption ability as well as water/NaCl uptake capability of the biomaterials were compared. Obtained results demonstrated that although both biomaterials had the same chemical composition, composite comprising hydroxyapatite sintered at temperature of 1150oC had smoother surface, revealed lower ion reactivity, was more favourable to osteoblast growth, and adsorbed lower amount of fibrinogen (which is known to promote biomaterial-induced inflammatory response), compared to the material made of hydroxyapatite sintered at temperature of 800oC. Thus, the type of bioceramics used for the production of biomaterials should be tailored to their specific applications – bone fillers for primarily in vivo implantation or in vitro cell-seeded scaffolds.
Słowa kluczowe
EN ion reactivity   bone scaffolds   alginate   water uptake  
Wydawca Polish Society for Biomaterials in Cracow
Czasopismo Engineering of Biomaterials
Rocznik 2018
Tom Vol. 21, no. 145
Strony 16--19
Opis fizyczny Bibliogr. 19 poz., rys., tab., zdj.
Twórcy
autor Kazimierczak, P.
  • Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
autor Syta, E.
  • Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
autor Sochan, J.
  • Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
autor Ginalska, G.
  • Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
autor Przekora, A.
  • Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland, agata.przekora@umlub.pl
Bibliografia
[1] Muralithran G., Ramesh S.: The effects of sintering temperature on the properties of hydroxyapatite. Ceram Int 26 (2000) 221-230.
[2] Vivanco J., Slane J., Nay R., Simpson A., Ploeg H.L.: The effect of sintering temperature on the microstructure and mechanical properties of a bioceramic bone scaffold. J Mech Behav Biomed 4 (2011) 2150-2160.
[3] Fihri A., Len Ch., Varna R.S., Solhy A.: Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coord Chem Rev 347 (2017) 48-76.
[4] Klimek K., Belcarz A., Pazik R., Sobierajska P., Han T., Wiglusz R.J., Ginalska G.: „False” cytotoxicity of ions-adsorbing hydroxyapatite- Corrected method of cytotoxicity evaluation for ceramics of high specific surface area. Mater Sci Eng C 65 (2016) 70-79.
[5] Malafaya B.P., Reis L.R.: Bilayered chitosan-based scaffolds for osteochondral tissue engineering: Influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double- chamber bioreactor. Acta Biomat 5 (2009) 644-660.
[6] Przekora A., Klimek K., Wójcik M., Palka K., Ginalska G.: New method for HA/glucan bone scaffold preparation reduces cytotoxic effect of highly reactive bioceramics. Mater Lett 190 (2017) 213-216.
[7] Gustavsson J., Ginebra M.P., Engel E., Planell J.: Ion reactivity of calcium-deficient hydroxyaatite in standard cell culture media. Acta Biomater 7 (2011) 4242-4252.
[8] Belcarz A., Zalewska J., Palka K., Hajnos M., Ginalska G.: Do Ca2+-adsorbing ceramics reduce the release of calcium ions from gypsum-based biomaterials?. Mater Sci Eng C Mater Biol Appl 47 (2015) 256-265.
[9] Farzadi A., Solati-Hashjin M., Bakhsi F., Aminian A.: Synthesis and characterization of hydroxyapatite/β-tricalcium phosphate nanocomposites using microwave irradiation. Ceram Int 37 (2011) 65-71.
[10] Klimek K., Przekora A., Palka K., Ginalska G.: New method for the fabrication of highly osteoconductive β-1,3-glucan/HA scaffold for bone tissue engineering: Structural, mechanical, and biological characterization. J Biomed Mater Res 104A (10) (2016) 2528-2536.
[11] Kar S., Kaur T., Thirugnanam A.: Microwave-assisted synthesis of porous chitosan-modified montmorillonite-hydroxyapatite composite scaffolds. Int J Biol Macromol 82 (2016) 628-636.
[12] Przekora A., Ginalska G.: In vitro evaluation of the risk of inflammatory response after chitosan/HA and chitosan/β-1,3-glucan/HA bone scaffold implantation. Mater Sci Eng C 61 (2016) 355-361.
[13] Woo K. M., Chen V. J., Ma P. X.: Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 67 (2) (2003) 531-537.
[14] Venkatesan J., Pallela R., Bhatnagar I., Kim S.K.: Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/ hydroxyapatite composite scaffolds for bone tissue engineering. Int J Biol Macromol 51(5) (2012) 1033-1042.
[15] Prabaharan M., Rodriguez-Perez M.A., de Saja J.A., Mano J.F.: Preparation and characterization of poly(L-lactic acid)-chitosan hybrid scaffolds with drug release capability. J Biomed Mater Res B Appl Biomater 81(2) (2007) 427-434.
[16] Vreeker R., Li L., Fang Y., Appelqvist I., Mendes E.: Drying and rehydration of calcium alginate gels. Food Biophys 3(4) (2008) 361-369.
[17] Le X., Poinern G.E., Ali N., Berry C.M., Fawcett D.: Engineering a biocompatible scaffold with either micrometre or nanometre scale surface topography for promoting protein adsorption and cellular response. Int J Biomater 2013 (2013) 782549 DOI:10.1155/2013/782549.
[18] Dorozhkin S.V., Epple M.: Biological and medical significance of calcium phosphates. Angew Chem Int Ed 41 (2002) 3130-3146.
[19] LeGeros R.Z., Lin S., Rohanizadeh R., Mijares D., LeGeros J.P.: Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med 14(3) (2003) 201-209.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-abac8c91-a909-467e-a3a0-f90a045ecb37
Identyfikatory