Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Optica Applicata

Tytuł artykułu

Delayed differential detection for absorption spectroscopy recovery

Autorzy Cong, Menglong  Sun, Dandan 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN An elaborately designed system has been devoted to the recovery of the line shape function of absorption spectrum. Laser power passing through trace gas has been divided into the real-time and delayed components, and their difference, i.e. the equivalent of the first-order derivative spectrum, is recorded and integrated to reconstruct the absorption line profile. Since the real-time and delayed signals are derived from the only gas cell and photodetector, the elimination of background is more effective, relative to the general used double beam detection that involves two gas cells and photodetectors. Compared with the 1st harmonic detection used in the wavelength modulation spectroscopy, here the generation of derivative spectrum is achieved without modulating the injection current of laser. Additionally, the expensive lock-in amplifier working for wavelength modulation spectroscopy is replaced by a homemade device, which is made of an all-pass filter and an instrumentation amplifier. Therefore, the complexity and cost are significantly reduced, and the stability is improved. For the purpose of validation, recovering of the absorption spectroscopy is carried out using a methane sample at its R(3) absorption line of the 2ν3overtone, and the obtained data are found to be in a high agreement with theoretical deductions.
Słowa kluczowe
EN wavelength modulation spectroscopy   WMS   absorption   derivative spectrum   harmonic detection   laser diode  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Optica Applicata
Rocznik 2019
Tom Vol. 49, nr 2
Strony 303--315
Opis fizyczny Bibliogr. 21 poz., rys.
autor Cong, Menglong
  • Inner Mongolia University for the Nationalities, College of Physics and Electronic Information, No. 536, Huolinhe Street, Tongliao 028000, China,
autor Sun, Dandan
  • Inner Mongolia University for the Nationalities, College of Physics and Electronic Information, No. 536, Huolinhe Street, Tongliao 028000, China
[1] KOZLOWSKA K., LUKOWIAK A., SZCZUREK A., DUDEK K., MARUSZEWSKI K., Sol-gel coatings for electrical gas sensors, Optica Applicata 35(4), 2005, pp. 783–790.
[2] YADAV B.C., YADAV R.C., DUBEY G.C., Optical humidity sensing behaviour of sol-gel processed nanostructured ZnO films, Optica Applicata 39(3), 2009, pp. 617–627.
[3] LUCCHESINI A., GOZZINI S., Methane diode laser overtone spectroscopy at 840 nm, Journal of Quantitative Spectroscopy and Radiative Transfer 103(1), 2007, pp. 209–216, DOI: 10.1016/j.jqsrt.200 6.02.056.
[4] WRIGHT S., DUXBURY G., LANGFORD N., A compact quantum-cascade laser based spectrometer for monitoring the concentrations of methane and nitrous oxide in the troposphere, Applied Physics B 85(2–3), 2006, pp. 243–249, DOI: 10.1007/s00340-006-2384-x.
[5] MASSIE C., STEWART G., MCGREGOR G., GILCHRIST J.R., Design of a portable optical sensor for methane gas detection, Sensors and Actuators B: Chemical 113(2), 2006, pp. 830–836, DOI: 10.1016/j.snb.20 05.03.105.
[6] QIXIN HE, CHUANTAO ZHENG, HUIFANG LIU, BIN LI, YIDING WANG, TITTEL F.K., A near-infrared acetylene detection system based on a 1.534 μm tunable diode laser and a miniature gas chamber, Infrared Physics and Technology 75, 2016, pp. 93–99, DOI: 10.1016/j.infrared.2016.01.006.
[7] PUSTELNY T., MACIAK E., OPILSKI Z., BEDNORZ M., Optical interferometric structures for application in gas sensors, Optica Applicata 37(1–2), 2007, pp. 187–194.
[8] WERLE P., SLEMR F., MAURER K., KORMANN R., MÜCKE R., JÄNKER B., Near- and mid-infrared laser-optical sensors for gas analysis, Optics and Lasers in Engineering 37(2–3), 2002, pp. 101–114, DOI: 10.1016/S0143-8166(01)00092-6.
[9] KRASNOSHCHEKOV S.V., VOGT N., STEPANOV N.F., Ab initio anharmonic analysis of vibrational spectra of uracil using the numerical-analytic implementation of operator Van Vleck perturbation theory, Journal of Physical Chemistry A 119(25), 2015, pp. 6723–6737, DOI: 10.1021/acs.jpca.5b03241.
[10] ASAKAWA T., KANNO N., TONOKURA K., Diode laser detection of greenhouse gases in the near-infrared region by wavelength modulation spectroscopy: pressure dependence of the detection sensitivity, Sensors 10(5), 2010, pp. 4686–4699, DOI: 10.3390/s100504686.
[11] CHUNGUANG LI, CHUANTAO ZHENG, LEI DONG, WEILIN YE, TITTEL F.K., YIDING WANG, Ppb-level mid-infrared ethane detection based on three measurement schemes using a 3.34-μm continuous-wave interband cascade laser, Applied Physics B 122(7), 2016, article ID 185, DOI: 10.1007/s00340-016-6460-6.
[12 ]IDEHARA T., KHUTORYAN E.M., TATEMATSU Y., YAMAGUCHI Y., KULESHOV A.N., DUMBRAJS O., MATSUKI Y.,FUJIWARA T., High-speed frequency modulation of a 460-GHz gyrotron for enhancement of 700-MHz DNP-NMR spectroscopy, Journal of Infrared, Millimeter, and Terahertz Waves 36(9), 2015, pp. 819–829,DOI: 10.1007/s10762-015-0176-2.
[13] SHARMA R., MITRA C., TILAK V., Diode laser-based trace detection of hydrogen-sulfide at 2646.3 nm and hydrocarbon spectral interference effects, Optical Engineering 55(3), 2016, article ID 037106, DOI: 10.1117/1.OE.55.3.037106.
[14] SCHILT S., TOMBEZ L., TARDY C., BISMUTO A., BLASER S., MAULINI R., TERAZZI R., ROCHAT M., SÜDMEYER T., An experimental study of noise in mid-infrared quantum cascade lasers of different designs, Applied Physics B 119(1), 2015, pp. 189–201, DOI: 10.1007/s00340-015-6021-4.
[15] WILSON G.V.H., Modulation broadening of NMR and ESR line shapes, Journal of Applied Physics 34(11), 1963, pp. 3276–3285, DOI: 10.1063/1.1729177.
[16] ZE-WEI ZUO, YI HAO, SANG-JIN CHOI, MINHO SONG, YOUNG-CHON KIM, JAE-KYUNG, Intensity modulation-based fibre optic vibration sensor using an aperture within a proof mass, IET Science, Measurement and Technology 11(1), 2017, pp. 49–56, DOI: 10.1049/iet-smt.2016.0167.
[17] BEHERA A., ANBO WANG, Calibration-free wavelength modulation spectroscopy: symmetry approachand residual amplitude modulation normalization, Applied Optics 55(16), 2016, pp. 4446–4455, DOI: 10.1364/AO.55.004446.
[18] FAROOQ A., JEFFRIES J.B., HANSON R.K., Measurements of CO2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7 μm, Applied Optics 48(35), 2009, pp. 6740–6753, DOI: 10.1364/AO.48.006740.
[19] CHAKRABORTY A.L., RUXTON K., JOHNSTONE W., Suppression of intensity modulation contributions to signals in second harmonic wavelength modulation spectroscopy, Optics Letters 35(14), 2010, pp. 2400–2402, DOI: 10.1364/OL.35.002400.
[20] ROTHMAN L.S., BARBE A., BENNER D.C., BROWN L.R., CAMY-PEYRET C., CARLEER M.R., CHANCE K., CLERBAUX C., DANA V., DEVI V.M., FAYT A., FLAUD J.M., GAMACHE R.R., GOLDMAN A., JACQUEMART D.,JUCKS K.W., LAFFERTY W.J., MANDIN J.Y., MASSIE S.T., NEMTCHINOV V., NEWNHAM D.A., PERRIN A., RINSLAND C.P., SCHROEDER J., SMITH K.M., SMITH M.A., TANG K., TOTH R.A., AUWERA J.V., VARANASI P.,YOSHINO K., The HITRAN molecular spectroscopic database: Edition of 2000 including updates through 2001, Journal of Quantitative Spectroscopy and Radiative Transfer 82(1–4), 2003, pp. 5–44,DOI: 10.1016/S0022-4073(03)00146-8.
[21] BAIN J.R.P., JOHNSTONE W., RUXTON K., STEWART G., LENGDEN M., DUFFIN K., Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation —Part 2: experimental investigation, Journal of Lightwave Technology 29(7), 2011, pp. 987–996.
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-ab8f1401-03de-479b-b7b3-cace3796325a
DOI 10.5277/oa190211