Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-aa5c9c33-e2fa-4dff-a878-3c00f210d33d

Czasopismo

Journal of Ecological Engineering

Tytuł artykułu

Effect of Using New Technology Vehicles on the World’s Environment and Petroleum Resources

Autorzy Al Rashdan, Maen  Al Zubi, Mohammad  Al Okour, Mohamad 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Nowadays, the trend towards the use of transportation technologies which are clean and less dependent on fossil fuel is highly increased. That is because of the fast depletion of oil reserves in the world. On the other hand, the growth of developing nations into industrialized ones will increase the demand on the energy sector, a large part of which is transportation. This development of the transportation sector will affect the environment as a result of greenhouse gases. In this paper, the use of several types of clean energy vehicles is demonstrated, compared with the ones utilizing classic internal combustion engine, with statistical demonstration and the energy conversion chain. The impact of hybrid vehicles on the petroleum reserves and consumption rates will also be discussed using some mathematical equations.
Słowa kluczowe
EN clean energy vehicle   emissions   conversion chain   depletion time  
Wydawca Polskie Towarzystwo Inżynierii Ekologicznej
Czasopismo Journal of Ecological Engineering
Rocznik 2019
Tom Vol. 20, nr 1
Strony 16--24
Opis fizyczny Bibliogr. 26 poz., rys.
Twórcy
autor Al Rashdan, Maen
  • Mechanical Engineering Department, Al Hoson College, Al Balqa Applied University, Jordan
autor Al Zubi, Mohammad
autor Al Okour, Mohamad
  • Mechanical Engineering Department, Al Hoson College, Al Balqa Applied University, Jordan
Bibliografia
1. BP Statistical Review of World Energy. BP Company, 2017.
2. Brennan J.W., Barder T.E. 2016. Battery Electric Vehicles vs. Internal Combustion Engine Vehicles. A United States-Based Comprehensive Assessment. Available: http://www.adlittle.us/uploads/tx_extthoughtleadership/ADL_BEVs_vs_ICEVs_FINAL_November_292016.pdf. [Accessed: Aug. 7, 2018].
3. Brutsaert W. 2017. Global land surface evaporation trend during the past half century: Corroboration by Clausius-Clapeyron scalling. Advances in Water Resources, 106, August, 3–5.
4. CO2 Emissions from Fuel Combustion Report, 2016. International Energy Agency.
5. Difiglio C. 2014. Oil, economic growth and strategic petroleum stocks. Energy Strategy Reviews, 5, December, 48–58.
6. Ehsani M., Emadi Y.A., 2009. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, Second Edition.
7. Economist, 2017. Electric Cars: Volts Wagons. February 18.
8. Evans R.L. 2005. Reducing Global Warming with innovative transportation technology. SAE Technical Paper Series.
9. Ferguson C.R., Kirkpatrick A.T., 2013. Internal Combustion Engines: Applied Thermosciences. Third Edition, Wiley.
10. Haldeman J., 2012. Automotive Fuel and Emission Control Systems. Third Edition, Pearson.
11. Hasan S., 2017. Impact on crude oil demand by electric vehicles in China – Adopting measures similar to Norwegian EV policy. Master thesis.
12. https://cleantechnica.com/2017/08/19/top-electric-car-countries-charts [Accessed: Aug. 7, 2018].
13. https://www.statista.com/statistics/270603/world-wide-number-of-hybrid-and-electric-vehicles-since-2009 [Accessed: Aug. 7, 2018].
14. Incekara C.O., Ougulata S.N. 2017. Turkey’s energy planning considering global environmental concerns. Ecological Engineering, 102, May, 589–595.
15. Global Greenhouse Gas Emissions Data, 2014. Intergovernmental Panel on Climate Change.
16. International Energy Outlook, 2017. US Department of Energy.
17. Kampman B., van Essen H., Braat W., et al., 2011. Impacts of Electric Vehicles – Deliverable 5, Impact Analysis For Market Uptake Scenarios and Policy Implications. ICF International. Ecologic Institute. Delft.
18. Kuriyama A., Abe N. 2018. Ex-post assessment of the Kyoto Protocol-quantification of CO2 mitigation impact in both Annex B and non-Anex B countries. Applied Energy, 220, June, 286–295.
19. O’Hayre R., Suk-Won Cha, Prinz F.B., Colella W., 2016. Fuel cell Fundamentals. Third Edition, Wiley.
20. Omer A.M. 2008. Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, 12, 2265–2300.
21. Onn C.C., et al., 2017. Greenhouse gas emissions associated with electric vehicle charging: The impact of electricity generation mix in a developing country. Transportation Research Part D. Available: http://dx.doi.org/10.1016/j.trd.2017.06.018 [Accessed: Aug. 7, 2018].
22. Environmental Protection Agency Report, 2017. Overview of Greenhouse Gases. United States.
23. Steinberger-Wilckens R., Lehnert W., 2010. Innovations in Fuel Cell Technologies. RSC Energy and Environment Series, No. 2.
24. Tianduo P., Xunmin O., Xiaoyu Y., 2018. Development and application of an electric vehicles life-cycle energy consumption and greenhouse gas emissions analysis model. Chemical Engineering Research and Design, 131, 699–708.
25. United States Energy Information Administration, 2017.
26. Ya Wu, Li Zhang, 2017. Can the development of electric vehicles reduce the emission of air pollutants and greenhouse gases in developing countries? Transportation Research Part D, 51, 129–145.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-aa5c9c33-e2fa-4dff-a878-3c00f210d33d
Identyfikatory
DOI 10.12911/22998993/93945