Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-a84d3bd5-c3ee-4142-abfb-32487d26728d

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Effect of patient-specific model scaling on hip joint reaction force in one-legged stance – study of 356 hips

Autorzy Hornova, J.  Kralj-Iglič, V.  Pedersen, D. R.  Daniel, M. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Estimation of hip joint loading is fundamental for understanding joint function, injury and disease. To predict patientspecific hip loading, a musculoskeletal model must be adapted to the patient’s unique geometry. By far the most common and cost effective clinical images are whole pelvis plain radiographs. This study compared the accuracy of anisotropic and isotropic scaling of musculoskeletal model to hip joint force prediction by taking patient-specific bone geometry from standard anteroposterior radiograms. Methods: 356 hips from 250 radiograms of adult human pelvis were analyzed. A musculoskeletal model was constructed from sequential images of the Visible Human Male. The common body position of one-legged stance was substituted for the midstance phase of walking. Three scaling methods were applied: a) anisotropic scaling by interhip separation, ilium height, ilium width, and lateral and inferior position of the greater trochanter, b) isotropic scaling by pelvic width and c) isotropic scaling by interhip separation. Hip joint force in one-legged stance was estimated by inverse static model. Results: Isotropic scaling affects all proportions equally, what results in small difference in hip joint reaction force among patients. Anisotropic hip scaling increases variation in hip joint force among patients considerably. The difference in hip joint force estimated by isotropic and anisotropic scaling may surpass patient’s body weight. Conclusions: Hip joint force estimated by isotropic scaling depends mostly on reference musculoskeletal geometry. Individual’s hip joint reaction force estimation could be improved by including additional bone geometrical parameters in the scaling method.
Słowa kluczowe
PL staw biodrowy   scaling   radiogram   obciążenie połączenia  
EN hip joint   scaling   radiogram   joint load  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 4
Strony 103--108
Opis fizyczny Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor Hornova, J.
  • Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
autor Kralj-Iglič, V.
  • Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
autor Pedersen, D. R.
  • Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa, City, Iowa
autor Daniel, M.
  • Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic, matej.daniel@fs.cvut.cz
Bibliografia
[1] ACKERMAN M.J., Accessing the Visible Human Project, D-Lib Magazin, 1995, 1(4), DOI: 10.1045/october95-ackerman.
[2] ARBABI E., SCHMID J., BOULIC R., THALMANN D., MAGNENAT-THALMANN N., Sensitivity of hip tissues contact evaluation to the methods used for estimating the hip joint center of rotation, Medical & Biological Engineering & Computing, 2012, 50(6), 595–604, DOI: 10.1007/s11517-012-0873-0.
[3] ARNOLD A.S., BLEMKER S.S., DELP S.L., Evaluation of a Deformable Musculoskeletal Model for Estimating Muscle-Tendon Lengths During Crouch Gait, Annals of Biomedical Engineering, 2001, 29(3), 263–274. DOI: 10.1114/1.1355277
[4] BERGMANN G., Hip 98: Loading of the hip joint, 2001.
[5] BRAND R.A., PEDERSEN D.R., FRIEDERICH J.A., The sensitivity of muscle force predictions to changes in physiologic crosssectional area, Journal of Biomechanics, 1986, 19(8), 589–596, DOI: 10.1016/0021-9290(86)90164-8.
[6] CORREA T.A., BAKER R., KERR G.H., PANDY M.G., Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait, Journal of Biomechanics, 2011, 44(11), 2096–2105, DOI: 10.1016/j.jbiomech.2011.05.023.
[7] CORREA T.A., PANDY M.G., A mass–length scaling law for modeling muscle strength in the lower limb, Journal of Biomechanics, 2011, 44(16), 2782–2789, DOI: 10.1016/j.jbiomech.2011.08.024.
[8] CROWNINSHIELD R.D., BRAND R.A., A physiologically based criterion of muscle force prediction in locomotion, Journal of Biomechanics, 1981, 14(11), 793–801, DOI:10.1016/0021-9290(81)90035-x
[9] DANIEL M., IGLIČ A., KRALJ-IGLIČ V., KONVIČKOVÁ S., Computer system for definition of the quantitative geometry of musculature from CT images, Computer Methods in Biomechanics and Biomedical Engineering, 2005, 8(1), 25–29, DOI: 10.1080/10255840500110952.
[10] DEBEVEC H., PEDERSEN D.R., IGLIČ A., DANIEL M., One-Legged Stance as a Representative Static Body Position for Calculation of Hip Contact Stress Distribution in Clinical Studies, Journal of Applied Biomechanics, 2010, 26(4), 522–525, DOI: 10.1123/jab.26.4.522
[11] DELP S.L., LOAN J.P., HOY M.G., ZAJAC F.E., TOPP E.L., ROSEN J.M., An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures, IEEE Transactions on Biomedical Engineering, 1990, 37(8), 757–767. DOI: 10.1109/10.102791
[12] DESAILLY E., SARDAIN P., KHOURI N., YEPREMIAN D., LACOUTURE P., The convex wrapping algorithm: A method for identifying muscle paths using the underlying bone mesh, Journal of Biomechanics, 2010, 43(13), 2601–2607. DOI:10.1016/j.jbiomech.2010.05.005
[13] IBM Visualization Data Explorer User’s Guide, International Business Machines Corporation, New York, USA, version 3 edition, 1997.
[14] IGLIČ A., KRALJ-IGLIČ V., DANIEL M., MAČEK-LEBAR A., Computer Determination of Contact Stress Distribution and Size of Weight Bearing Area in the Human Hip Joint, Computer Methods in Biomechanics and Biomedical Engineering, 2002, 5(2), 185–192, DOI: 10.1080/10255840290010300.
[15] LENAERTS G., BARTELS W., GELAUDE F., MULIER M., SPAEPEN A., VAN DER PERRE G. et al., Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait, Journal of Biomechanics, 2009, 42(9), 1246–1251, DOI: 10.1016/j.jbiomech.2009.03.037.
[16] LENAERTS G., DE GROOTE F., DEMEULENAERE B., MULIER M., VAN DER PERRE G., SPAEPEN A. et al., Subject-specific hip geometry affects predicted hip joint contact forces during gait, Journal of Biomechanics, 2008, 41(6), 1243–1252, DOI:10.1016/j.jbiomech.2008.01.014.
[17] MENEGALDO L.L., DE OLIVEIRA L.F., Effect of muscle model parameter scaling for isometric plantar flexion torque prediction, Journal of Biomechanics, 2009, 42(15), 2597–2601, DOI: 10.1016/j.jbiomech.2009.06.043.
[18] RECNIK G., KRALJ-IGLIČ V., IGLIČ A., ANTOLIČ V., KRAMBERGER S., RIGLER I. et al., The role of obesity, biomechanical constitution of the pelvis and contact joint stress in progression of hip osteoarthritis, Osteoarthritis and Cartilage, 2009, 17(7), 879–882, DOI: 10.1016/j.joca.2008.12.006.
[19] SCHEYS L., VAN CAMPENHOUT A., SPAEPEN A., SUETENS P., JONKERS I., Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: Effect on hip moment arm lengths, Gait & Posture, 2008, 28(3), 358–365, DOI:10.1016/j.gaitpost.2008.05.002
[20] SCHEYS L., DESLOOVERE K., SUETENS P., JONKERS I., Level of subject-specific detail in musculoskeletal models affects hip moment arm length calculation during gait in pediatric subjects with increased femoral anteversion, Journal of Biomechanics, 2011, 44(7), 1346–1353, DOI: 10.1016/j.jbiomech.2011.01.001.
[21] SCHEYS L., SPAEPEN A., SUETENS P., JONKERS I., Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lowerlimb musculoskeletal models, Gait & Posture, 2008, 28(4), 640–648. DOI: 10.1016/j.gaitpost.2008.04.010
[22] SEIDEL G.K., MARCHINDA D.M., DIJKERS M., SOUTAS-LITTLE R.W., Hip joint center location from palpable bony landmarks – A cadaver study, Journal of Biomechanics, 1995, 28(8), 995–998, DOI: 10.1016/0021-9290(94)00149-x
[23] TSIRAKOS D., BALTZOPOULOS V., BARTLETT R., Inverse Optimization: Functional and Physiological Considerations Related to the Force-Sharing Problem, Critical Reviews™ in Biomedical Engineering, 1997, 25(4–5), 371–407, DOI:10.1615/critrevbiomedeng.v25.i4-5.20.
[24] VICECONTI M., TESTI D., TADDEI F., MARTELLI S., CLAPWORTHY G.J., JAN S.V.S., Biomechanics Modeling of the Musculoskeletal Apparatus: Status and Key Issues, Proceedings of the IEEE, 2006, 94(4), 725–739, DOI:10.1109/jproc.2006.871769.
[25] WU G., SIEGLER S., ALLARD P., KIRTLEY C., LEARDINI A., ROSENBAUM D. et al., ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion. Part I: ankle, hip, and spine, Journal of Biomechanics, 2002, 35(4), 543–548, DOI: 10.1016/s0021-9290(01)00222-6.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-a84d3bd5-c3ee-4142-abfb-32487d26728d
Identyfikatory
DOI 15.5277/ABB-00839-2017-02