Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-a84d39c3-2ebe-44f1-8db7-16ad461b2b1c

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Shape optimisation of a ventricular assist device using a VADFEM computer program

Autorzy Kopernik, M. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The Polish ventricular assist device, POLVAD_EXT, is made of a polymer designed to be covered with a nanocoating of titanium nitride to improve haemocompatibility. A loss of cohesion can occur between the coating and the substrate. An analysis of stress and strain states in a multi-scale model of the blood chamber was performed in the finite element computer program, VADFEM. The multiscale model is composed of a macro model of the blood chamber and a micro model of the titanium nitride (TiN) deposited on the polymer. The finite element method and the goal function, based on the triaxiality factor, are used to solve the problems formulated. The theories of non-linear elasticity and elasto-plasticity are applied. The goal of the paper is to optimise the construction of the POLVAD_EXT with respect to shape parameters.
Słowa kluczowe
PL metoda elementów skończonych   optymalizacja   komorowe wspomaganie pracy serca  
EN ventricular assist device   finite element method   optimisation   goal function   multi-scale modelling  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2013
Tom Vol. 15, nr 3
Strony 81--87
Opis fizyczny Bibliogr. 24 poz., rys.
Twórcy
autor Kopernik, M.
Bibliografia
[1] MACIOŁ P., GAWĄD J., PODORSKA D., Arrangement of flow modification devices in continuous casting tundish based on multicriterion optimization, Arch. Metall. Mater., 2007, 52(1), 105–112.
[2] BIN X., NAN C., HUAJUN C., An integrated method of multiobjective optimization for complex mechanical structure, Adv. Eng. Softw., 2010, 41, 277–285.
[3] SCHITTKOWSKI K., ZILLOBER C., System Modeling and Optimization, Chapter V, Nonlinear programming: algorithms, software, and applications – from small to very large scale optimization, ed., Springer, New York, 2005, 73–107.
[4] DEB K., PRATAP A., AGARWAL S., MEYARIVAN T., A fast and elitist multi-objective genetic algorithm: NSGA-II, IEEE T. Evolut. Comput., 2002, 6(2), 182–197.
[5] PANT S., LIMBERT G., CURZEN N.P., BRESSLOFF N.W., Multiobjective design optimisation of coronary stents, Biomaterials, 2011, 32, 7755–7773.
[6] KONIECZNY G., OPILSKI Z., PUSTELNY T., GAWLIKOWSKI M., Acoustic system for the estimation of the temporary blood chamber volume of the POLVAD heart supporting prosthesis, BioMedical Engineering Online, 2012, 11, art. no. 72.
[7] EBNER R., LACKNER J.M., WALDHAUSER W., MAJOR R., CZARNOWSKA E., KUSTOSZ R., LACKI P., MAJOR B., Biocompatibile TiN-based novel nanocrystalline films, Bull. Pol. Ac. Tech., 2006, 54, 167–173.
[8] GREGORY S.D., TIMMS D., GADDUM N., MASON D.G., FRASER J.F., Biventricular Assist Devices: A Technical Review, Ann. Biomed. Eng., 2011, 39, 2313–2328.
[9] FRASER K.H., TASKIN M.E., GRIFfiTH B.P., WU Z.J., The use of computational fluid dynamics in the development of ventricular assist devices, Med. Eng. Phys., 2011, 33, 263–280.
[10] PAN W., FEDOSOV D.A., CASWELL B., KARNIADAKIS G.E., Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells, Microvasc. Res., 2011, 82, 163–170.
[11] YAMAGUCHI T., ISHIKAWA T., IMAI Y., MATSUKI N., XENOS M., DENG Y., BLUESTEIN D., Particle-Based Methods for Multiscale Modeling of Blood Flow in the Circulation and in Devices: Challenges and Future Directions, Ann. Biomed. Eng., 2010, 38, 1225–1235.
[12] MILENIN A., KOPERNIK M., Comparative analysis of ventricular assist devices POLVAD and POLVAD_EXT based on multiscale FEM model, Acta Bioeng. Biomech., 2011, 13(2), 13–23.
[13] KOPERNIK M., MILENIN A., MAJOR R., LACKNER J.M., Identification of material model of TiN using numerical simulation of nanoindentation test, Mater. Sci. Tech., 2011, 27, 604–616.
[14] MILENIN A., KOPERNIK M., Microscale analysis of strain–stress state for TiN nanocoating of POLVAD and POLVAD_EXT, Acta Bioeng. Biomech., 2011, 13(4), 11–19.
[15] MILENIN A., KOPERNIK M., JURKOJĆ D., GAWLIKOWSKI M., RUSIN T., DARŁAK M., KUSTOSZ R., Numerical modelling and verification of Polish ventricular assist device, Acta Bioeng. Biomech., 2012, 14(3), 49–57.
[16] KOPERNIK M., MILENIN A., Two-scale FEM model of multilayer blood chamber of POLVAD_EXT, Arch. Civ. Mech. Eng., 2012, 12(2), 178–185.
[17] MAJOR R., CZARNOWSKA E., SOWIŃSKA A., KUSTOSZ R., LACKNER J.M., WALDHAUSER W., WOŹNIAK M., WIERZCHOŃ T., MAJOR B., Structure and biocompatibility of TiN coatings on polyurethane produced by laser ablation, e-Polym., 2004, 26, 1–8.
[18] KOPERNIK M., MILENIN A., Sensitivity analysis of nanoindentation test for specimen composed of TiAlN and TiN using mathematical model, Steel Research International, 2008, 79, 555–562.
[19] MILENIN A., KOPERNIK M., FEM code for the multi-scale simulation of the stress–strain state of the blood chamber composed of polyurethane and TiN nanocoating, Comput. Method in Mater. Sci., 2011, 11, 215–222.
[20] MILENIN A., KOPERNIK M., The muliscale FEM model of artificial heart chamber composed of nanocoatings, Acta Bioeng. Biomech., 2009, 11(2), 13–20.
[21] MILENIN A., Bases of finite element method, Akademia Górniczo-Hutnicza, Kraków, 2010 (in Polish).
[22] KWEON S., Damage at negative triaxiality, Eur. J. Mech. A-Solid., 2012, 31, 203–212.
[23] KOPERNIK M., MILENIN A., Multi-scale modelling of the blood chamber of a left ventricular assist device, Advances in Biomechanics and Applications, 2013, 1(1), 23–40.
[24] WIKLUND U., GUNNARS J., HOGMARK S., Influence of residual stresses on fracture and delamination of thin hard coatings, Wear, 1999, 232, 262–269.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-a84d39c3-2ebe-44f1-8db7-16ad461b2b1c
Identyfikatory