Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Archiwum Fotogrametrii, Kartografii i Teledetekcji

Tytuł artykułu

Using Locata to augment GNSS in a kinematic urban environment

Autorzy Bonenberg, L.  Roberts, G.  Hancock, C. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN GNSS has become one of the most widespread measurement technologies, widely used in GIS, mobile mapping applications and civil engineering. Utilisation of differential techniques offers cm-level positioning accuracy. Identified drawbacks are the requirement for line of sight to the satellites and accuracy dependent on the geometric distribution of the satellites. Especially the latter is paramount for any surveying or mobile mapping application in the urban environment. The utilisation of additional constellations (GLONASS, GALILEO or COMPASS) only partly mitigates the problem. Locata is an Australian terrestrial positioning technology, based on the pseudolite concept. It’s unique in its utilisation of the 2.4GHz ISM band and proprietary TimeLoc procedure, allowing for network synchronisation at the nanosecond level. This paper focuses on the tight integration of GNSS with Locata, in order to address the described drawbacks and to provide cm level positioning in areas currently “difficult” for GNSS – such as urban canyons. This paper describes the intended deployment and utilisation of the integrated system in the typical urban environment where availability of GPS can be limited or even non-existent, depending on the time and location. The verification of the integration methods has been carried out using simulated GPS and Locata data. Also presented is an application simulation in a typical urban canyon environment (Canary Wharf, London, UK) using proprietary software developed at the University of Nottingham. Simulation of the proposed integration algorithms, using a real life scenario, has shown promising results with centimetre-level positioning accuracy on the moving platform. The algorithm provides code ambiguity estimation for both Locata and GPS on-the-fly, without prior knowledge of the position, providing predominantly 3D position on the cm level.
Słowa kluczowe
PL inżyneria   miernictwo   czas rzeczywisty  
EN engineering   surveying   urban   value added   locata   real time  
Wydawca Zarząd Główny Stowarzyszenia Geodetów Polskich
Czasopismo Archiwum Fotogrametrii, Kartografii i Teledetekcji
Rocznik 2011
Tom Vol. 22
Strony 63--74
Opis fizyczny Bibliogr. 23 poz.
autor Bonenberg, L.
autor Roberts, G.
autor Hancock, C.
1. Barnes, J, Lamance, J, Lilly, B, Rogers, I, Nix, M & Balls, A 2007, ‘An integrated Locata & Leica Geosystems positioning system for open-cut mining applications ‘, in ION, Fort Worth.
2. Barnes, J, Rizos, C, Kanli, M & Pahwa, A 2006, ‘A positioning technology for classically difficult GNSS environments from Locata’, 2006 IEEE/ION Position, Location and Navigation Symposium, Vols 1-3, pp. 715-721.
3. Bertsch, J 2009, On-the-fly Ambiguity Resolution for the Locata Positioning System, The University of New South Wales.
4. Bonenberg, LK, Hancock, CM & Roberts, GW 2010, ‘Indoor multipath effect study on the Locata system’, Journal of Applied Geodesy, vol. 4, no. 3, pp. 137-143.
5. Bonenberg, LK, Hancock, CM, Roberts, GW, Ogundipe, O & Lee, JK 2009, ‘Feasibility of integrated Locata and GNSS for Engineering Work Application’, International Symposium on GPS/GNSS.
6. Dietz, H, Sasum, R, Meining, S, Martin, S, Voithenberg, Mv, Bestmann, U & Becker, M 2007, ‘SEA GATE - The operational maritime Galileo testbed in Europe’, in ION 2007, The Institute of Navigation, Fort Worth, Texas.
7. Gottifredi, F, Eleuteri, M, Morante, Q, Valle, V, Varriale, E & Cretoni, D 2008, ‘Galileo Test Range Pseudolites: a Performance Augmentation System’, Proceedings of the 2008 National Technical Meeting of the Institute of Navigation - Ntm 2008, pp. 595-602.
8. Grewal, MS, Weill, LR & Andrews, AP 2006, Global Positioning Systems, Inertial Navigation, and Integration, John Wiley & Sons, Inc.
9. Hancock, C, Roberts, G & Taha, A 2006, ‘Satellite Mapping in Cities, How good can it get?’, Proceedings of the ICE - Civil Engineering, vol. 162, no. 3, pp. 122 -128.
10. Jianguo Jack, W, Jinling, W, Kearsley, AHW, Hung Kyu, L, David, S & Leo, W 2005, ‘Tropospheric Delay Estimation for Pseudolite Positioning’, Journal of Global Positioning Systems, vol. 4, no. 1-2, pp. 106-112
11. Jianguo Jack, W, Jinling, W, Kearsley, AHW, Hung Kyu, L, David, S & Leo, W 2008, Pseudolite Augmentation for GPS Aided Aerial Photogrammetry: An Analysis of Systematic Errors, Geomatics Research Australasia.
12. Kaplan, EA, Hegarty C. 2006, Understanding GPS, 2nd ed, Artech House.
13. Khan, FA, Rizos, C & Dempster, AG 2010, ‘Locata performance evaluation in the presence of wide- and narrow-band interference’, Journal of Navigation, vol. 63, no. 3, pp. 527-543.
14. Meng, X, Dodson, AH & Roberts, GW 2007, ‘Detecting bridge dynamics with GPS and triaxial accelerometers’, Engineering Structures, vol. 29, no. 11, pp. 3178-3184.
15. Meng X., RGW, Dodson A. H., Cosser E., Barnes J., Rizos C. 2003, ‘Impact of GPS satellite and pseudolite geometry on structural deformation monitoring: analytical and empirical studies’, vol. 77, pp. 809-822.
16. Montillet, J-P 2008, Precise Positioning in Urban Canyons: Applied to the Localisation of Buried Assets
17. Montillet, JP, Roberts, GW, Hancock, C, Meng, X, Ogundipe, O & Barnes, J 2009, ‘Deploying a Locata network to enable precise positioning in urban canyons’, Journal of Geodesy, vol. 83, no. 2, pp. 91-103.
18. Parkinson, BW, Spilker, JJ, Axelrad, P, Enge, P & American Institute of Aeronautics and, A 1996, Global positioning system : theory and applications, 2 vols, American Institute of Aeronautics and Astronautics, Washington, DC.
19. Rizos, C, Grejner-Brzezinska, DA, Toth, CK, Dempster, AG, Li, Y, Politi, N, Barnes, J, Sun, H & Li, L 2010, ‘Hybrid positioning a prototype system for navigation in GPS-challenged environments’, GPS World, vol. 21, no. 3, pp. 42-47.
20. Roberts, GW, Meng, X, Brown, CJ & Dallard, P 2006, ‘GPS measurements on the London Millennium Bridge’, Proceedings of the Institution of Civil Engineers: Bridge Engineering, vol. 159, no. 4, pp. 153-161.
21. Schlotzer, S, Martin, S & Voithenberg, Mv 2007, ‘Autonomous Navigation Environment with Self-Calibrating Transceivers ‘, Journal of Global Positioning Systems, vol. 6, no. 2, pp. 149-157.
22. Shockley, J & Rackquet, J 2006, ‘Estimation and Mitigation of Unmodeled Errors for Pseudolite based Rference System’, ION GNSS 2006.
23. Yang, G, He, X & Chen, Y 2010, ‘Integrated GPS and Pseudolite positioning for deformation monitoring’, Survey Review, vol. 42, no. 315, pp. 72-81.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-a82546e8-6f4e-47f9-bd23-a88ab1f756bd