Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of strain localization in numerical simulation of sheet metal forming

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
This paper presents an investigation on the detection of strain localization in numerical simulation of sheet metal forming. Two methods to determine the onset of localized necking have been compared. The first criterion, newly implemented in this work, is based on the analysis of the through-thickness thinning (through-thickness strain) and its first time derivative in the most strained zone. The limit strain in the second method, studied in the authors’ earlier works, is determined by the maximum of the strain acceleration. The limit strains have been determined for different specimens undergoing deformation at different strain paths covering the whole range of the strain paths typical for sheet forming processes. This has allowed to construct numerical forming limit curves (FLCs). The numerical FLCs have been compared with the experimental one. Mesh sensitivity analysis for these criteria has been performed for the selected specimens. It has been shown that the numerical FLC obtained with the new criterion predicts formability limits close to the experimental results so this method can be used as a potential alternative tool to determine formability in standard finite element simulations of sheet forming processes.
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland,
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland,
  • [1] R.E. Dick, J.W. Yoon, T.B. Stoughton, Path-independent forming limit models for multi-stage forming processes, Int. J. Mater. Form. (2015) 1–11.
  • [2] J. Zhang, Y. Xu, P. Hu, K. Zhao, Development and applications of forming-condition-based formability diagram for split concerns in stamping, J. Manuf. Processes 17 (2015) 151–161.
  • [3] M. Abspoel, M.E. Scholting, J.M. Droog, A new method for predicting forming limit curves from mechanical properties, J. Mater. Process. Technol. 213 (5) (2013) 759–769.
  • [4] ISO 20482, Metallic Materials – Sheet and Strip – Erichsen Cupping Test, 2003.
  • [5] ISO 12004-2, Metallic Materials – Sheet and Strip – Determination of Forming-Limit Curves. Part 2: Determination of Forming-Limit Curves in the Laboratory, 2008.
  • [6] D. Banabic, L. Lazarescu, L. Paraianu, I. Ciobanu, I. Nicodim, D. Comsa, Development of a new procedure for the experimental determination of the forming limit curves, CIRP Ann. Manuf. Technol. 62 (1) (2013) 255–258.
  • [7] H.W. Swift, Plastic instability under plane stress, J. Mech. Phys. Solids 1 (1) (1952) 1–18.
  • [8] R. Hill, On discontinuous plastic states with special reference to localized necking in thin sheets, J. Mech. Phys. Solids 1 (1952) 19–30.
  • [9] Z. Marciniak, Stability of plastic shells under tension with kinematic boundary condition, Arch. Mech. Stosorwanej 17 (1994) 577–592.
  • [10] Q. Situ, M. Jain, D. Metzger, Determination of forming limit diagrams of sheet materials with a hybrid experimental- numerical approach, Int. J. Mech. Sci. 53 (4) (2011) 707–719.
  • [11] D. Banabic, Sheet Metal Forming Processes Constitutive Modelling and Numerical Simulation, Springer, 2010.
  • [12] D. Banabic, A review on recent developments of Marciniak– Kuczynski model, Comput. Methods Mater. Sci. 10 (4) (2010) 225–237.
  • [13] C. Veerman, P.F. Neve, Some aspects of the determination of the FLD-onset of localized necking, Sheet Metal Ind. 49 (1972) 421–423.
  • [14] R. d'Hayer, A. Bragard, Determination of the limiting strains at the onset of necking, Centre Res. Metall. 42 (1975) 33–35.
  • [15] T. Kobayashi, H. Ishigaki, A. Tadayuki, Effect of strain ratios on the deforming limit of steel sheet and its application to the actual press forming, in: Proceedings of the IDDRG Congress, 1972, pp. 8.1–8.4.
  • [16] S.S. Hecker, Simple technique for determining forming limit curves, Sheet Metal Ind. 5 (1975) 671–676.
  • [17] W. Volk, P. Hora, New algorithm for a robust user-independent evaluation of beginning instability for the experimental FLC determination, Int. J. Mater. Form. 4 (3) (2011) 339–346.
  • [18] Q. Situ, M. Jain, M. Bruhis, A suitable criterion for precise determination of incipient necking in sheet materials, Mater. Sci. Forum 519-521 (2006) 111–116.
  • [19] Z. Zimniak, Nowa metoda wyznaczania utraty stateczności blachy oraz napręŜeń szczątkowych, in: Proceedings of FORMING'2002, 2002, 333–338.
  • [20] H. Mamusi, A. Masoumi, R. Mahdavinezhad, Numerical simulation for the formability prediction of the laser welded blanks (TWB), Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 6 (7) (2012) 111–116.
  • [21] D. Lumelskyy, J. Rojek, P.R.F. Grosman, M. Tkocz, Numerical simulation of formability tests of pre-deformed steel blanks, Arch. Civil Mech. Eng. 12 (2) (2012) 133–141.
  • [22] D. Lumelskyj, J. Rojek, M. Tkocz, Numerical simulations of Nakazima formability tests with prediction of failure, Roman. J. Tech. Sci. Appl. Mech. 60 (3) (2015) 184–194.
  • [23] D. Lumelskyj, J. Rojek, D. Banabic, L. Lazarescu, Detection of strain localization in Nakazima formability test – experimental research and numerical simulation, in: 17th International Conference on Sheet Metal, SHEMET17, Procedia Eng. 183 (2017) 89–94.
  • [24] D. Lumelskyy, J. Rojek, R. Pecherski, F. Grosman, M. Tkocz, W. Chorzepa, Forming limit curves for complex strain paths, Arch. Metall. Mater. 2 (58) (2013) 587–593.
  • [25] J. Rojek, O. Zienkiewicz, E. Oñate, E. Postek, Advances in FE explicit formulation for simulation of metalforming processes, J. Mater. Process. Technol. 119 (1–3) (2001) 41–47.
  • [26] P. Kowalczyk, J. Rojek, R. Stocki, T. Bednarek, P. Tauzowski, R. Lasota, D. Lumelskyy, K. Wawrzyk, Numpress – integrated computer system for analysis and optimization of industrial sheet metal forming processes, Hutnik – Wiadomości Hutnicze 81 (1) (2014) 56–63.
  • [27] J. Rojek, E. Oñate, Sheet springback analysis using a simple shell triangle with translational degrees of freedom only, Int. J. Form. Processes 1 (3) (1998) 275–296.
  • [28] H. Yu, Y. Huang, Asymptotic expansion and superconvergence for triangular linear finite element on a class of typical mesh, Int. J. Numer. Anal. Model. 9 (2012) 892–908.
  • [29] R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proc. R. Soc. London (1948) 281–297.
  • [30] D. Lumelskyy, J. Rojek, R. Pecherski, F. Grosman, M. Tkocz, Influence of friction on strain distribution in Nakazima formability test of circular specimen, in: 4th International Lower Silesia – Saxony Conference on Advanced Metal Forming Processes in Automotive Industry AutoMetForm, Freiberg, 2014, 214–217.
  • [31] M. Jirasek, Objective modeling of strain localization, Rev. fr. genie civil 6 (2002) 1119–1132.
  • [32] A. Graf, W. Hosford, Calculations of forming limit diagram for changing strain paths, Metall. Trans. A 24 (11) (1993) 2497– 2501.
  • [33] F. Ozturk, D. Lee, Experimental and numerical analysis of out-of-plane formability test, J. Mater. Process. Technol. 170 (1–2) (2005) 247–253.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.