PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical model of a flat plate photocatalytic reactor irradiated by solar light

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Model matematyczny płaskiego reaktora fotokatalitycznego, pracującego w świetle slonecznym
Języki publikacji
EN
Abstrakty
EN
The paper presents a model of a flat plate photocatalytic reactor under solar radiation. The model was based on convection and diffusive mass flux balances in two zones: thin liquid layer and pores in the layer of a porous catalysts. The flux of light intensity was described by Kubelka–Munk theory.
PL
W artykule przedstawiono model opisujący pracę płaskiego reaktora fotokatalitycznego, pracującego w świetle słonecznym. Model został oparty o bilans konwekcyjnych i dyfuzyjnych strumieni masy w dwóch strefach: cienkim filmie cieczy i porach warstwy katalizatora. Strumień natężenia światła został opisany za pomocą teorii Kubelka–Munka.
Rocznik
Strony
85--93
Opis fizyczny
Bibliogr. 22 poz., wz., wykr.
Twórcy
autor
  • Department of Chemical and Process Engineering, Faculty of Chemical Engineering and Technology, Cracow University of Technology
autor
  • Department of Chemical and Process Engineering, Faculty of Chemical Engineering and Technology, Cracow University of Technology
Bibliografia
  • [1] Parsons S., Advanced Oxidation Processes (AOP) for water purification and recovery, Catalysis Today, vol. 53(1), 1999, 51-59.
  • [2] Oller I., Malato S., Sanchez-Perez J.A., Combination of Advanced Oxidation Processes and biological treatments for wastewater treatment decontamination – A review, Science of The Total Environmental, vol. 409(20), 2011, 4141-4166.
  • [3] Oppenlander T., Photochemical Purification of Water and Air: Advanced Oxidation Processes (AOPs)-Principles, Reaction Mechanism, Reactor Concepts, Wiley, Darmstadt 2003.
  • [4] Zhao J., Yang X., Photocatalytic Oxidation for indoor air purification: a literature review, Building and Environmental, vol. 38, 2003, 645-654.
  • [5] Preethi V., Kanmani S., Photocatalytic hydrogen production, Materials Science in Semiconductor Processing, vol. 16, 2013, 561-575.
  • [6] Mukherjee P.S., Ray A.K., Major Challenges in the Design of a Large-Scale Photocatalytic Reactor for Water Treatment, Chemical Engineering & Technology, vol. 22(3), 1999, 253-260.
  • [7] Bahnemann D., Photocatalytic water treatment: solar energy applications, Solar Energy, vol. 77, 2004, 445-459.
  • [8] Behnajady M.A., Modirshahla N., Hamzavi R., Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst, Journal of Hazardous Materials, vol. 133 (1-3), 2006, 226-232.
  • [9] Sauer T., Cesconeto Neto G., Jose H.J., Moriera R.F.P.M., Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor, Journal of Photochemistry and Photobiologymistry, vol. 149(1-3), 2002, 147-154.
  • [10] Ramamurthy V., Schanze K.S., Semiconductor Photochemistry and Photophysics, Marcel Derrer, Inc., vol. 10, New York 2003.
  • [11] Lazar A.M., Varghese S., Nair S.S., Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates, Catalysts, vol. 2, 2012, 572-601.
  • [12] Dionysiou D.D., Suidan M.T., Baudin I., Laine J.M., Oxidation of organics contaminants in a rotating disk photocatalytic reactor: reaction kinetics in liquid phase and the role of mass transfer based on the dimensionless Damkolher number, Applied Catalysis B: Environmental, vol. 38, 2002, 1-16.
  • [13] Al-Ekabi H., Serpone N., Kinetic Studies In Heterogeneous Photocatalysis, 1. Photocatalytic Degradation of Chlorinated Phenols in Areated Aquerous Solutions over TiO2 Supported on a Glass Matrix, Journal of Physical Chemistry, vol. 92, 1988, 5726-5731.
  • [14] Khataee A.R., Fathinia M., Aber S., Kinetic Modeling of Liquid Phase Photocatalysis on Supported TiO2 Nanoparticles in a Rectangular Flat-Plate Photoreactor, Industrial & Engineering Chemistry Research, vol. 49, 2010, 12358-12364.
  • [15] Ciani A., Goss K.U., Schawrzenbach R.P., Light penetration in soil and particulate minerals, European Journal of Soil Science, vol. 56, 2005, 561-574.
  • [16] Gates D.M., Spectral Distribution of Solar Radiation at the Earth’s Surface, Science, vol. 151(3710), 1966, 523-529.
  • [17] Nogueira R.F.P., Jardim W.F., TiO2-fixed-bed reactor for water decontamination using solar energy, Solar Energy, vol. 56(5), 1996, 471-477.
  • [18] Sclafani A., Palmisano L., Schiavello M., Influence of the Preparation Methods of TiO2 on Photocatalytic Degradation of Phenol in Aqueous Dispersion, Journal of Physical Chemistry, vol. 94, 1990, 829-832.
  • [19] Cabrera M.I., Alfane O.M., Cassano A.E., Absorption and Scattering Coefficients of Titanium Dioxide Particulate Suspensions in Water, Journal of Physical Chemistry, vol. 100, 1996, 20043-20050.
  • [20] Zhang Z., Anderson W.A., Moo-Young M., Rigorous modelling of UV-absorption by TiO2 films in a photocatalytic reactor, AIChE Journal, vol. 46(7), 2000, 1461-1470.
  • [21] Brandi R.J., Alfano O.M., Cassano A.E., Modeling of flat plate photocatalytic reactor, 5. World Congress of Chemical Engineering, San Diego, 14-18 July 1996, 1118.
  • [22] Do D.D., Adsorption analysis: equilibria and kinetics, Imperial College Press, Singapore 1998.
Uwagi
EN
Section "Chemistry"
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a719d376-2fda-4c9c-8e26-9f8825b2f5b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.