PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stress-strength interference-based importance for series systems considering common cause failure

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena opartej na modelu obciążeniowo-wytrzymałościowym ważności elementów systemu szeregowego z uwzględnieniem uszkodzeń wywołanych wspólną przyczyną
Języki publikacji
EN
Abstrakty
EN
Series systems, whose structures are simple, are widely discovered in practical engineering, but the interdependency between the components is complex, such as common cause failure. With the consideration of the components’ strength, this paper focuses on ranking the importance measure of components considering the common cause failure based on the stress-strength interference (SSI) model. The weakest component can be identified by integrating the SSI model with the importance measure when the strength mean and variance of the component under the load stress is known. Firstly, the analytic methods are proposed to calculate the SSI-based importance of components in the series systems. Then, the monotonicity of SSI-based importance is analyzed by changing the strength mean or strength variance of one component. The results show that the SSI-based importance of components, whose parameters are changed, will reduce monotonically with the increase of strength mean or increase monotonically with the increase of strength variance. Finally, a component replacement method is developed based on the rules that both the importance of replaced component and the importance ranks should be unchanged after the replacement. SSI-based importance can help engineers to make maintenance decisions, and the component replacement method can increase the diversity of spare parts by finding the equivalent components.
PL
Systemy szeregowe, które są szeroko stosowane w praktyce inżynieryjnej, charakteryzują się prostą strukturą, jednak współzależności między ich elementami są złożone, czego przykładem są uszkodzenia wywołane wspólną przyczyną. Rozważając wytrzymałości składowych systemu, opracowano metodę szeregowania miar ważności składowych z uwzględnieniem uszkodzeń wywołanych wspólną przyczyną. Metoda ta pozwala zidentyfikować najsłabsze ogniwo systemu. Miarę istotności zintegrowano z modelem obciążeniowo-wytrzymałościowym (SSI), biorąc pod uwagę średnią i wariancję wytrzymałości elementu pod obciążeniem. W pierwszym kroku opracowano metody analityczne pozwalające na obliczanie opartej na SSI ważności elementów w systemach szeregowych. Następnie analizowano monotoniczność opartej na SSI ważności zmieniając średnią lub wariancję wytrzymałości jednego z elementów. Wyniki pokazują, że mierzona w oparciu o SSI ważność elementów, których parametry są zmieniane, maleje monotonicznie wraz ze wzrostem średniej wytrzymałości lub rośnie monotonicznie wraz ze wzrostem wariancji wytrzymałości. Na podstawie przeprowadzonych badań, opracowano metodę wymiany części, opartą na zasadzie polegającej na tym, że zarówno ważność zastąpionego elementu, jak i rangi ważności powinny pozostać niezmienione po wymianie. Możliwość określania ważności opartej na modelu SSI może pomóc inżynierom w podejmowaniu decyzji dotyczących konserwacji, zaś proponowana metoda wymiany elementów systemu pozwala zwiększyć różnorodność części zamiennych poprzez znalezienie równoważnych elementów.
Rocznik
Strony
241--252
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • Department of Industrial Engineering School of Mechatronic Engineering Xi’an Technological University 38 Mailbox, No.2 Xuefuzhonglu Road, Weiyang District, Xi'an 710021, China, yuguangwei@xatu.edu.cn
autor
  • Department of Industrial Engineering School of Mechatronic Engineering Xi’an Technological University 38 Mailbox, No.2 Xuefuzhonglu Road, Weiyang District, Xi'an 710021, China, duyanwei@xatu.edu.cn
autor
  • Department of Industrial Engineering School of Mechatronic Engineering Xi’an Technological University 38 Mailbox, No.2 Xuefuzhonglu Road, Weiyang District, Xi'an 710021, China, yanli@xatu.edu.cn
autor
  • Luoyang Institute of Electro-optical Devices, Aviation Industry Corporation of China No.613 Guanlin Road, Luolong District, Luoyang 471003, China, renfangyu@aliyun.com
Bibliografia
  • 1. Barlow R E, Proschan F. Importance of system components and fault tree events. Stochastic Processes and their applications 1975; 3(2): 153-173, http://dx.doi.org /10.1016/0304-4149(75)90013-7.
  • 2. Barlow R E, Wu A S. Coherent systems with multi-state components. Mathematics of Operations Research 1978; 3(4): 275-281, http://dx.doi.org/10.1287/moor.3.4.275.
  • 3. Bhattacharyya G, Johnson R A. Estimation of reliability in a multicomponent stress-strength model. Journal of the American Statistical Association 1974; 69(348): 966-970, http://dx.doi.org/10.1016/0026-2714(93)90362-3.
  • 4. Birnbaum Z W. On the importance of different components in a multicomponent system. Washington Univ Seattle Lab of Statistical Research 1968, http://dx.doi.org/10.21236/ad0670563.
  • 5. Borgonovo E, Apostolakis G E. A new importance measure for risk-informed decision making. Reliability Engineering & System Safety 2001; 72(2): 193-212, http://dx.doi.org/10.1016/s0951-8320(00)00108-3.
  • 6. Do Van P, Barros A, Bérenguer C. Reliability importance analysis of Markovian systems at steady state using perturbation analysis. Reliability Engineering & System Safety 2008; 93(11): 1605-1615, http://dx.doi.org/10.1016/j.ress.2008.02.020.
  • 7. Do Van P, Barros A, Bérenguer C. From differential to difference importance measures for Markov reliability models. European Journal of Operational Research 2010; 204(3): 513-521, http://dx.doi.org/10.1016/j.ejor.2009.11.025.
  • 8. Dui H, Chen L, Wu S. Generalized integrated importance measure for system performance evaluation: application to a propeller plane system. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2017; 19 (2): 279–286, http://dx.doi.org/10.17531/ein.2017.2.16.
  • 9. Dui H, Li S, Xing L, Liu H. System performance-based joint importance analysis guided maintenance for repairable systems. Reliability Engineering & System Safety 2019; 186: 162-175, http://dx.doi.org/10.1016/j.ress.2019.02.021.
  • 10. Dui H, Si S, Yam R C. Importance measures for optimal structure in linear consecutive-k-out-of-n systems. Reliability Engineering & System Safety 2018; 169: 339-350, http://dx.doi.org/10.1016/j.ress.2017.09.015.
  • 11. Fang Y, Tao W, Tee K. A new computational method for structural reliability with big data. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2019; 21 (1): 159–163, http://dx.doi.org/10.17531/ein.2019.1.18.
  • 12. Fleming K. Reliability model for common mode failures in redundant safety systems. In Modeling and simulation. Volume 6, Part 1, 1975.
  • 13. Fussell J. How to hand-calculate system reliability and safety characteristics. IEEE Transactions on Reliability 1975; 24 (3): 169-174, http://dx.doi.org/10.1109/tr.1975.5215142.
  • 14. Gao P, Xie L. Dynamic reliability models of mechanical load-sharing parallel systems considering strength degradation of components. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2015; 229(13): 2484-2495,http://dx.doi.org/10.1177/0954406214560000.
  • 15. Gao P, Yan S, Xie L, Wu J. Dynamic reliability analysis of mechanical components based on equivalent strength degradation paths. Strojniški vestnik-Journal of Mechanical Engineering 2013; 59(6): 387-399, http://dx.doi.org /10.5545/sv-jme.2012.541.
  • 16. Griffith W S. Multistate reliability models. Journal of Applied Probability 1980; 17(3): 735-744, http://dx.doi.org/10.1017/s0021900200033842.
  • 17. Kuo W, Zhu X. Importance measures in reliability, risk, and optimization: principles and applications. John Wiley & Sons: 2012, http://dx.doi.org/10.1002/9781118314593.
  • 18. Kuo W, Zhu X. Some recent advances on importance measures in reliability. IEEE Transactions on Reliability 2012; 61(2): 344-360, http://dx.doi.org/10.1109/tr.2011.2182394.
  • 19. Lambert H E. Fault trees for decision making in systems analysis; Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States): 1975, http://dx.doi.org/10.2172/4169124.
  • 20. Levitin G, Podofillini L, Zio E. Generalised importance measures for multi-state elements based on performance level restrictions. Reliability Engineering & System Safety 2003; 82(3): 287-298, http://dx.doi.org/10.1016/s0951-8320(03)00171-6.
  • 21. Lewis E E. A load-capacity interference model for common-mode failures in 1-out-of-2: G systems. IEEE Transactions on Reliability 2001; 50(1): 47-51, http://dx.doi.org/10.1109/24.935017.
  • 22. Lisnianski A, Levitin G. Multi-state system reliability: assessment, optimization and applications. World Scientific Publishing Company: 2003, http://dx.doi.org 10.1142/5221.
  • 23. Natvig B. Measures of component importance in nonrepairable and repairable multistate strongly coherent systems. Methodology and Computing in Applied Probability 2011; 13(3): 523-547, http://dx.doi.org/10.1007/s11009-010-9170-2.
  • 24. Pavlović P, Makajić-Nikolić D, Vujošević M. A new approach for determining the most important system components and the budgetconstrained system reliability improvement. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2017; 19 (3): 413–419, http://dx.doi.org/10.17531/ein.2017.3.12.
  • 25. Ramirez-Marquez J E, Coit D W. Composite importance measures for multi-state systems with multi-state components. IEEE transactions on Reliability 2005; 54(3): 517-529, http://dx.doi.org/10.1109/tr.2005.853444.
  • 26. Ramirez-Marquez J E, Coit D W. Multi-state component criticality analysis for reliability improvement in multi-state systems. Reliability Engineering & System Safety 2007; 92(12): 1608-1619, http://dx.doi.org/10.1016/j.ress.2006.09.014.
  • 27. Shen J C, Liu L M, Jiao A S, Yi X B. A stress-strength interference model with strength degradation following a Gamma process, Advanced Materials Research. Trans Tech Publications 2014; 945: 1196-1200, http://dx.doi.org/10.4028/www.scientific.net/amr.945-949.1196.
  • 28. Shrestha A, Xing L, Coit D W. An efficient multistate multivalued decision diagram-based approach for multistate system sensitivity analysis. IEEE Transactions on Reliability 2010; 59(3): 581-592, http://dx.doi.org/10.1109/tr.2010.2055922.
  • 29. Si S, Dui H, Zhao X, Zhang S, Sun S. Integrated importance measure of component states based on loss of system performance. IEEE Transactions on Reliability 2012; 61(1): 192-202, http://dx.doi.org/10.1109/TR.2011.2182394.
  • 30. Si S, Liu M, Jiang Z, Jin T, Cai Z. System reliability allocation and optimization based on generalized Birnbaum importance measure. IEEE Transactions on Reliability 2019; 68(3):831-843, http://dx.doi.org/10.1109/tr.2019.2897026.
  • 31. Vesely W. A time-dependent methodology for fault tree evaluation. Nuclear engineering and design 1970; 13(2): 337-360, http://dx.doi.org/10.1016/0029-5493(70)90167-6.
  • 32. Vesely W, Davis T, Denning R, Saltos N. Measures of risk importance and their applications; Battelle Columbus Labs.: 1983, http://dx.doi.org/10.2172/5786790.
  • 33. Wang N, Zhao J B, Jiang, Z Y, Zhang S. Reliability optimization of systems with component improvement cost based on importance measure. Advances in Mechanical Engineering 2018; 10(11): 1687814018809781, http://dx.doi.org/10.1177/1687814018809781.
  • 34. Wang Z, Xie L. Dynamic reliability model of components under random load. IEEE Transactions on Reliability 2008; 57, (3), 474-479, http://dx.doi.org/10.1109/tr.2008.928184.
  • 35. Wu S, Chan L Y. Performance utility-analysis of multi-state systems. IEEE Transactions on Reliability 2003; 52(1): 14-21, http://dx.doi.org/10.1109/tr.2002.805783.
  • 36. Xie L, Zhou J, Hao C. System-level load-strength interference based reliability modeling of k-out-of-n system. Reliability Engineering & System Safety 2004; 84(3): 311-317., http://dx.doi.org/10.1016/j.ress.2003.12.003.
  • 37. Xie L, Zhou J, Wang X. Data mapping and the prediction of common cause failure probability. IEEE Transactions on Reliability 2005; 54(2): 291-296, http://dx.doi.org/10.1109/tr.2005.847244.
  • 38. Xie M, Shen K. On ranking of system components with respect to different improvement actions. Microelectronics Reliability 1989; 29(2): 159-164, http://dx.doi.org/10.1016/0026-2714(89)90564-7.
  • 39. Xue J, Yang K. Upper and lower bounds of stress-strength interference reliability with random strength-degradation. IEEE Transactions on Reliability 1997; 46(1): 142-145, http://dx.doi.org/10.1109/24.589940.
  • 40. Yang Y, Huang H, Liu Y, Zhu S P, Peng W. Reliability analysis of electrohydraulic servo valve suffering common cause failures. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2014; 16(3): 354-359.
  • 41. Zhang S, Zhao J B, Zhu W J, Du L. Reliability optimization of linear consecutive k-out-of-n: F systems with Birnbaum importance-based quantum genetic algorithm. Advances in Mechanical Engineering 2019; 11(4): 1687814019842996, http://dx.doi.org/10.1177/1687814019842996.
  • 42. Zhao J B, Hou P Y, Cai Z Q, Li Y, Guo P. Research of mission success importance for a multi-state repairable k-out-of-n system. Advances in Mechanical Engineering 2018; 10(2): 1687814018762208, http://dx.doi.org/10.1177/1687814018762208.
  • 43. Zhao J, Cai Z, Si W, Zhang S. Mission success evaluation of repairable phased-mission systems with spare parts. Computers & Industrial Engineering 2019; 132: 248-259, http://dx.doi.org 10.1016/j.cie.2019.04.038.
  • 44. Zhao J, Si S, Cai Z. A multi-objective reliability optimization for reconfigurable systems considering components degradation. Reliability Engineering & System Safety 2019; 183: 104-115, http://dx.doi.org/10.1016/j.ress.2018.11.001.
  • 45. Zhao J, Si S, Cai Z, Su M, Wang W. Multiobjective optimization of reliability-redundancy allocation problems for serial parallel-series systems based on importance measure. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2019;233(5): 881-897, http://dx.doi.org/10.1177/1748006X19844785.
  • 46. Zio E, Podofillini L. Monte Carlo simulation analysis of the effects of different system performance levels on the importance of multi-state components. Reliability Engineering & System Safety 2003; 82(1): 63-73, http://dx.doi.org/10.1016/s0951-8320(03)00124-8.
  • 47. Zuo F, Yu L, Mi J, Liu Z, Huang H. Reliability analysis of gear transmission with considering failure correlation. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015; 17 (4): 617–623, http://dx.doi.org/10.17531/ein.2015.4.19.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6afbdbb-c3c1-4e64-b606-42ec46cc37f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.