Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-a5cc5357-e32f-4b26-a692-bd5c3b0557b9

Czasopismo

Journal of Power of Technologies

Tytuł artykułu

Direct carbon, integrated gasification, and deposited carbon solid oxide fuel cells: a patent-based review of technological status

Autorzy Skrzypkiewicz, M.  Obrębowski, S. 
Treść / Zawartość http://www.papers.itc.pw.edu.pl
Warianty tytułu
Języki publikacji EN
Abstrakty
EN This review presents three directions in solid oxide fuel cell (SOFC) technology development involving solid-state carbon in some stage of the fuel-to-electricity conversion process: direct carbon (DC-SOFC), integrated gasification (IG-SOFC) and deposited carbon (rechargeable SOFC). Recent achievements of science and technology were studied in order to identify the most widely developed concepts. In addition, the review contains a statistical approach to published patents and articles, naming the people and institutions active in the field. Simultaneous development of all three technologies could bring synergies and contributed to a major breakthrough in the efficiency of coal-fired power plants.
Słowa kluczowe
PL ogniwo paliwowe węglowe   ogniwo paliwowe ze stałym tlenkiem   DC-SOFC   DCFC   IG-SOFC   czyste technologie węglowe  
EN direct carbon fuel cell   solid oxide fuel cell   DC-SOFC   DCFC   IG-SOFC   clean coal technologies  
Wydawca Institute of Heat Engineering, Warsaw University of Technology
Czasopismo Journal of Power of Technologies
Rocznik 2018
Tom Vol. 98, nr 1
Strony 139--160
Opis fizyczny Bibliogr. 145 poz., rys., tab., wykr.
Twórcy
autor Skrzypkiewicz, M.
autor Obrębowski, S.
  • Institute of Power Engineering, Thermal Processes Department, ul. Augustówka 36, 02-981 Warsaw, Poland
Bibliografia
[1] International Energy Agency, Key World Energy Statistics (2015).
[2] T. Chmielniak, H. Łukowicz, Wysoko sprawne „zero-emisyjne” bloki węglowe zintegrowane z wychwytem co2 ze spalin, Polityka energetyczna 15 (2012) 91–106.
[3] H. Ghezel-Ayagh, Advances in sofc development at fuelcell energy, in: 14th Annual SECA Workshop, Pittsburgh, PA, 2013.
[4] Accessed on 3.09.2016. [link]. URL http://www.siemens.com/stories/cc/en/record-breaking-power-plant/#chapter-solution
[5] J. Kupecki, J. Jewulski, K. Motylinski, Parametric evaluation of a micro-chp unit with solid oxide fuel cells integrated with oxygen transport membranes, international journal of hydrogen energy 40 (35) (2015) 11633–11640.
[6] J. Kupecki, Off-design analysis of a micro-chp unit with solid oxide fuel cells fed by dme, international journal of hydrogen energy 40 (35) (2015) 12009–12022.
[7] J. Kupecki, Modeling platform for a micro-chp system with sofc operating under load changes, in: Applied Mechanics and Materials, Vol. 607, Trans Tech Publ, 2014, pp. 205–208.
[8] J. Kupecki, J. Milewski, K. Badyda, J. Jewulski, Evaluation of sensitivity of a micro-chp unit performance to sofc parameters, ECS Transactions 51 (1) (2013) 107–116.
[9] J. Kupecki, M. Skrzypkiewicz, M. Wierzbicki, M. Stepien, Experimental and numerical analysis of a serial connection of two sofc stacks in a micro-chp system fed by biogas, International Journal of Hydrogen Energy 42 (5) (2017) 3487–3497.
[10] S. Campanari, L. Mastropasqua, M. Gazzani, P. Chiesa, M. C. Romano, Predicting the ultimate potential of natural gas sofc power cycles with co2 capture–part a: Methodology and reference cases, Journal of Power Sources 324 (2016) 598–614.
[11] M. C. Williams, T. Horita, K. Yamaji, H. Yokokawa, An application of solid particles in fuel cell technology, KONA Powder and Particle Journal 25 (2007) 153–161.
[12] T. M. Gür, Critical review of carbon conversion in "carbon fuel cells", Chemical reviews 113 (8) (2013) 6179–6206.
[13] B. Heydorn, S. Crouch-Baker, Direct carbon conversion – progressions of power, Institute of Physics and IOP Publishing, 2006.
[14] S. Giddey, S. Badwal, A. Kulkarni, C. Munnings, A comprehensive review of direct carbon fuel cell technology, Progress in Energy and Combustion Science 38 (3) (2012) 360–399.
[15] K. Hemmes, J. Cooper, J. Selman, Recent insights concerning dcfc development: 1998–2012, international journal of hydrogen energy 38 (20) (2013) 8503–8513.
[16] Y. Bai, Y. Liu, Y. Tang, Y. Xie, J. Liu, Direct carbon solid oxide fuel Cell-a potential high performance battery, international journal of hydrogen energy 36 (15) (2011) 9189–9194.
[17] T. Gur, Direct carbon fuel cell system utilizing solid carbonaceous fuels, Final scientific/technical report, Direct Carbon Technologies, dOE Award No. DE-NT0004395 (2010).
[18] T. M. Gür, M. Homel, A. V. Virkar, High performance solid oxide fuel cell operating on dry gasified coal, Journal of power sources 195 (4) (2010) 1085–1090.
[19] D. R. Lide, CRC Handbook of chemistry and physics, 87th Edition (2006-2007).
[20] R. O’Hayre, S. W. Cha, W. Colella, F. B. Prinz, Fuel Cell Fundamentals, John Wiley & Sons, New York, 2006.
[21] A. C. Chien, S. S. Chuang, Effect of gas flow rates and boudouard reactions on the performance of ni/ysz anode supported solid oxide fuel cells with solid carbon fuels, Journal of Power Sources 196 (10) (2011) 4719–4723.
[22] S. L. Jain, Y. Nabae, B. J. Lakeman, K. D. Pointon, J. T. Irvine, Solid state electrochemistry of direct carbon/air fuel cells, Solid State Ionics 179 (27) (2008) 1417–1421.
[23] P. Desclaux, S. Nürnberger, M. Rzepka, U. Stimming, Investigation of direct carbon conversion at the surface of a ysz electrolyte in a sofc, international journal of hydrogen energy 36 (16) (2011) 10278–10281.
[24] R. Wolk, Direct carbon fuel cells: Assessment of their potential as solid carbon fuel based power generation systems, Report to the CMS Review Committee UCRL-SR-203880, Lawrence Livermore National Laboratory (LLNL), Livermore, CA (2004).
[25] J. F. Cooper, Direct conversion of coal derived carbon in fuel cells, in: Recent trends in fuel cell science and technology, Springer, 2007, pp. 248–266.
[26] M. Ihara, S. Hasegawa, K. Yamahara, Solid oxide cell. United States Patent No.: US8309272B2 (2012).
[27] M. Ihara, S. Hasegawa, K. Yamahara, Solid oxide cell. Japanese Patent No.: JP5284596B2 (2013).
[28] E. Masahiro, M. Ihara, Electric generator. Japanese Patent No.: JP5344565B2 (2013).
[29] M. Ihara, K. Naganari, O. Kazunori, F. Yasuhiro, M. Takeshi, K. Hiroyuki, Solid oxide cell for generating electricity using the power generation method and the generation method of the solid oxide cell. Japanese Patent No.: JP5489327B2 (2014).
[30] M. Ihara, O. Kazunori, F. Yasuhiro, M. Takeshi, K. Hiroyuki, Power generation method of the solid oxide fuel cell. Japanese Patent No.:JP5495377B2 (2014).
[31] M. Ihara, S. Hasegawa, K. Yamahara, Solid oxide fuel cell with solid carbon deposited on the anode. Canadian Patent No.: CA2647249C (2015).
[32] J. P. Kim, C. H. Jeon, J. H. Song, G. B. Kim, Y. G. Kim, Angle-adjustable coal fuel cell unit. Republic of Korea Patent No.: KR101010535B1 (2011).
[33] C. H. Jeon, J. P. Kim, Y. J. Chang, S. K. Lee, W. S. Son, S. Y. Kim, S. D. Lee, S. K. Lee, Solid oxide fuel cell system fueled by natural gas. Republic of Korea Patent No.: KR101223645B1 (2013).
[34] C. H. Jeon, J. P. Kim, S. M. Kim, Solid oxide fuel cell system equipped with carbon monoxide generator using ultraclean coal or graphite. Republic of Korea Patent No.: KR101477195B1 (2014).
[35] C. H. Jeon, J. P. Kim, S. M. Kim, Solid oxide fuel cell system equipped with carbon monoxide generator using ultraclean coal or graphite. United States Patent No.: US9257713B2 (2016).
[36] J.-P. Kim, H. Lim, C.-H. Jeon, Y.-J. Chang, K.-N. Koh, S.-M. Choi, J.-H. Song, Performance evaluation of tubular fuel cells fuelled by pulverized graphite, Journal of Power Sources 195 (22) (2010) 7568–7573.
[37] J.-P. Kim, H.-K. Choi, Y.-J. Chang, C.-H. Jeon, Feasibility of using ash-free coal in a solid-oxide-electrolyte direct carbon fuel cell, international journal of hydrogen energy 37 (15) (2012) 11401–11408.
[38] S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Flat plate type bubbling bed solid oxide direct carbon fuel cell stack. Republic of China Utility Model No.: CN202004100U (2011).
[39] S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Fuel cell stack. Republic of China Utility Model No.: CN202034437U (2011).
[40] S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Solid oxide direct carbon fuel cell stack of tablet bubbling bed. Republic of China Patent No.: CN102170009B (2012).
[41] S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Compact flat-plate solid oxide direct carbon fuel cell stack. Republic of China Patent No.: CN102185149B (2013).
[42] X. Yu, Y. Shi, H. Wang, N. Cai, C. Li, R. I. Tomov, J. Hanna, B. A. Glowacki, A. F. Ghoniem, Experimental characterization and elementary reaction modeling of solid oxide electrolyte direct carbon fuel cell, Journal of Power Sources 243 (2013) 159–171.
[43] T. M. Gür, R. Huggins, Direct electrochemical conversion of carbon to electrical energy in a high temperature fuel cell. United States Patent No.: US5376469A (1994).
[44] T. M. Gür, High temperature direct coal fuel cell. United States Patent No.: US7799472B2 (2010).
[45] T. M. Gür, R. E. Mitchell, A. C. Lee, S. Li, Integrated dry gasification fuel cell system for conversion of solid carbonaceous fuels. United States Patent No.: US8563183B2 (2013).
[46] A. C. Lee, S. Li, R. E. Mitchell, T. M. Gür, Conversion of solid carbonaceous fuels in a fluidized bed fuel cell, Electrochemical and Solid-State Letters 11 (2) (2008) B20–B23.
[47] S. Li, A. C. Lee, R. E. Mitchell, T. M. Gür, Direct carbon conversion in a helium fluidized bed fuel cell, Solid State Ionics 179 (27-32) (2008) 1549–1552.
[48] A. C. Lee, R. E. Mitchell, T. M. Gür, Thermodynamic analysis of gasification-driven direct carbon fuel cells, Journal of Power Sources 194 (2) (2009) 774–785.
[49] T. M. Gür, Mechanistic modes for solid carbon conversion in high temperature fuel cells, Journal of The Electrochemical Society 157 (5) (2010) B751–B759.
[50] M. Homel, T. M. Gür, J. H. Koh, A. V. Virkar, Carbon monoxide-fueled solid oxide fuel cell, Journal of Power Sources 195 (19) (2010) 6367–6372.
[51] J. Jewulski, M. Skrzypkiewicz, S. Obrebowski, Sposób i układ elektrochemicznej generacji energii elektrycznej w stosach stałotlenkowych zasilanych zwłaszcza paliwem węglowym [The method and the system of electrochemical generation of electric energy in solid oxide stacks, fueled in particular with carbonaceous fuel]. Republic of Poland Patent No.: PL405205B (2013).
[52] J. Jewulski, M. Skrzypkiewicz, S. Obrebowski, Stos węglowych ogniw paliwowych [Carbon fuel cell stack]. Republic of Poland Patent No.: PL405206B (2013).
[53] M. Dudek, P. Tomczyk, K. Juda, R. Tomov, B. Glowacki, S. Batty, P. Risby, R. Socha, Comparison of the performances of dcfc fueled with the product of methane rf plasma reforming and carbon black, Int. J. Electrochem. Sci 7 (2012) 6704–6721.
[54] M. Dudek, R. Tomov, C. Wang, B. Glowacki, P. Tomczyk, R. Socha, M. Mosiałek, Feasibility of direct carbon solid oxide fuels cell (dcsofc) fabrication by inkjet printing technology, Electrochimica Acta 105 (2013) 412–418.
[55] M. Dudek, P. Tomczyk, R. Socha, M. Skrzypkiewicz, J. Jewulski, Biomass fuels for direct carbon fuel cell with solid oxide electrolyte, Int. J. Electrochem. Sci 8 (2013) 3229–3253.
[56] J. Jewulski, M. Skrzypkiewicz, Direct carbon fuel cells based on solid oxide electrolyte technology, Przegla˛d elektrotechniczny 89 (2013) 268–270.
[57] J. Jewulski, M. Skrzypkiewicz, M. Struzik, I. Lubarska-Radziejewska, Lignite as a fuel for direct carbon fuel cell system, international journal of hydrogen energy 39 (36) (2014) 21778–21785.
[58] R. Antunes, M. Skrzypkiewicz, Chronoamperometric investigations of electro-oxidation of lignite in direct carbon bed solid oxide fuel cell, International Journal of Hydrogen Energy 40 (12) (2015) 4357–4369.
[59] M. Skrzypkiewicz, I. Lubarska-Radziejewska, J. Jewulski, The effect of fe2o3 catalyst on direct carbon fuel cell performance, International Journal of Hydrogen Energy 40 (38) (2015) 13090–13098.
[60] M. Dudek, M. Skrzypkiewicz, N. Moskała, P. Grzywacz, M. Sitarz, I. Lubarska-Radziejewska, The impact of physicochemical properties of coal on direct carbon solid oxide fuel cells, International Journal of Hydrogen Energy 41 (41) (2016) 18872–18883.
[61] M. Skrzypkiewicz, M. Dudek, Carbon as a fuel for efficient electricity generation in carbon solid oxide fuel cells, in: E3S Web of Conferences, Vol. 10, EDP Sciences, 2016, p. 00116.
[62] C. N. Li, Buried tube type bubbling bed direct carbon fuel cell. Republic of China Patent No.: CN100440597C (2008).
[63] N. Cai, C. Li, Y. Shi, Direct carbon fuel cell reaction device. Republic of China Patent No.: CN100595959C (2010).
[64] Y. Shi, N. Cai, H. Wang, Fluid bed electrode direct carbon fuel cell device. Republic of China Patent Application Publication No.: CN102324539A (2012).
[65] X.-Y. Zhao, Q. Yao, S.-Q. Li, N.-S. Cai, Studies on the carbon reactions in the anode of deposited carbon fuel cells, Journal of Power Sources 185 (1) (2008) 104–111.
[66] C. Li, Y. Shi, N. Cai, Performance improvement of direct carbon fuel cell by introducing catalytic gasification process, Journal of Power Sources 195 (15) (2010) 4660–4666.
[67] C. Li, Y. Shi, N. Cai, Effect of contact type between anode and carbonaceous fuels on direct carbon fuel cell reaction characteristics, Journal of Power Sources 196 (10) (2011) 4588–4593.
[68] C. Li, Y. Shi, N. Cai, Mechanism for carbon direct electrochemical reactions in a solid oxide electrolyte direct carbon fuel cell, Journal of Power Sources 196 (2) (2011) 754–763.
[69] J. H. Yoo, H. K. Choi, S. D. Kim, S. H. Lee, Y. J. Rhim, Solid oxide fuel cells fueled by gasificating of solid carbon. Republic of Korea Patent No.: KR101177648B1 (2012).
[70] T. H. Lim, R. H. Song, S. J. Park, S. B. Lee, J. W. Lee, B. J. Jung, N. Y. Lee, Coal pretreatment method for direct carbon fuel cell and direct carbon fuel cell thereof. Republic of Korea Patent No.: KR101451904B1 (2014).
[71] T.-H. Lim, S.-K. Kim, U.-J. Yun, J.-W. Lee, S.-B. Lee, S.-J. Park, R.-H. Song, Performance characteristic of a tubular carbon-based fuel cell short stack coupled with a dry carbon gasifier, international journal of hydrogen energy 39 (23) (2014) 12395–12401.
[72] H. Ju, J. Eom, J. K. Lee, H. Choi, T.-H. Lim, R.-H. Song, J. Lee, Durable power performance of a direct ash-free coal fuel cell, Electrochimica Acta 115 (2014) 511–517.
[73] J. Lee, H. K. Ju, J. Y. Eom, J. K. Lee, Membrane-electrode assembly, direct carbon fuel cell including the same, and method of preparing the same. United States Patent No.: US9406946B2 (2016).
[74] J. Lee, H. K. Ju, J. Y. Eom, J. K. Lee, Membrane-electrolyte assembly, direct carbon fuel cell comprising the same, and the preparation thereof. Republic of Korea Patent No.: KR101647294B1 (2016).
[75] H. Jang, J. D. Ocon, S. Lee, J. K. Lee, J. Lee, Direct power generationfrom waste coffee grounds in a biomass fuel cell, Journal of Power Sources 296 (2015) 433–439.
[76] S. Chuang, Carbon-based fuel cell.United Stated Patent No.: US8940454B2 (2015).
[77] S. Chuang, Fuel cell of direct electrochemical oxidation (versions) and generation method of electric energy from solid-phase organic fuel (versions). Russian Federation Patent No.: RU2420833C2(2011).
[78] A. J. Zillmer, J. P. Carroll, Fuel cell instrumentation system. United States Patent No.: US7826054B2 (2010).
[79] J. Liu, Y. Liu, Y. Tang, Y. Bai, Direct carbon solid oxide fuel cell power system. Republic of China Patent No.: CN102130354B (2013).
[80] Y. Tang, J. Liu, Effect of anode and boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells, international journal of hydrogen energy 35 (20) (2010) 11188–11193.
[81] Y. Bai, C. Wang, J. Ding, C. Jin, J. Liu, Direct operation of coneshaped anode-supported segmented-in-series solid oxide fuel cell stack with methane, Journal of Power Sources 195 (12) (2010) 3882–3886.
[82] Y. Xie, Y. Tang, J. Liu, A verification of the reaction mechanism of direct carbon solid oxide fuel cells, Journal of Solid State Electrochemistry 17 (1) (2013) 121–127.
[83] L. Zhang, J. Xiao, Y. Xie, Y. Tang, J. Liu, M. Liu, Behavior of strontiumand magnesium-doped gallate electrolyte in direct carbon solid oxide fuel cells, Journal of Alloys and Compounds 608 (2014) 272–277.
[84] Y. Xie, W. Cai, J. Xiao, Y. Tang, J. Liu, M. Liu, Electrochemical gas–electricity cogeneration through direct carbon solid oxide fuel cells, Journal of Power Sources 277 (2015) 1–8.
[85] W. Cai, Q. Zhou, Y. Xie, J. Liu, A facile method of preparing fe-loaded activated carbon fuel for direct carbon solid oxide fuel cells, Fuel 159 (2015) 887–893.
[86] H. Lyu, W. Tian, W. Wang, Y. Jiao, S. Li, Split type direct carbon solid oxide fuel cell device. Republic of China Patent No.: CN203871426U(2014).
[87] Y. Jiao, W. Tian, H. Chen, H. Shi, B. Yang, C. Li, Z. Shao, Z. Zhu, S.-D. Li, In situ catalyzed boudouard reaction of coal char for solid oxidebased carbon fuel cells with improved performance, Applied Energy 141 (2015) 200–208.
[88] Y. Jiao, J. Zhao, W. An, L. Zhang, Y. Sha, G. Yang, Z. Shao, Z. Zhu, S.-D. Li, Structurally modified coal char as a fuel for solid oxidebased carbon fuel cells with improved performance, Journal of Power Sources 288 (2015) 106–114.
[89] Y. Jiao, L. Zhang, W. An, W. Zhou, Y. Sha, Z. Shao, J. Bai, S.-D. Li, Controlled deposition and utilization of carbon on ni-ysz anodes of sofcs operating on dry methane, Energy 113 (2016) 432–443.
[90] S. Wang, Q. Gao, L. Shao, C. Zhang, C. Yuan, X. Liu, T. Wei, C. Ji, Direct carbon solid oxide fuel cell stack. Republic of China Patent No.: CN103078128B (2015).
[91] R. Liu, C. Zhao, J. Li, F. Zeng, S. Wang, T. Wen, Z. Wen, A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells, Journal of Power Sources 195 (2) (2010) 480–482.
[92] J. Zhou, X. Ye, L. Shao, X. Zhang, J. Qian, S. Wang, A promising direct carbon fuel cell based on the cathode-supported tubular solid oxide fuel cell technology, Electrochimica Acta 74 (2012) 267–270.
[93] T. Horita, N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, Solid oxide fuel cell and a carbon direct-oxidizing-type electrode for the fuel cell. United States Patent No.: US6183896B1 (2001).
[94] J. Y. Hwang, K. T. Kang, H. S. Kang, S. H. Lee, Fuel supplying apparatus for dcfc and system including the same. Republic of Korea Patent No.: KR101350456B1 (2014).
[95] J. Y. Hwang, K. T. Kang, H. S. Kang, S. H. Lee, Fuel supplying apparatus and system for direct carbon fuel cell. United States Patent No.: US9799900B2 (2017).
[96] M. Ihara, Y. Chiaki, The method of operating a solid oxide fuel cell and solid oxide fuel cell. Japanese Patent No.: JP4504642B2 (2010).
[97] S. G. Kim, S. C. Hwang, S. T. Kuk, C. M. Yang, Direct carbon fuel cell stack. Republic of Korea Patent No.: KR101351324B1 (2014).
[98] B. P. Ennis, Carbon capture with power generation. United States Patent No.: US8850826B2 (2014).
[99] Q. Fan, R. Liu, Direct carbon fueled solid oxide fuel cell or high temperature battery. United States Patent No.: US7745026B2 (2010).
[100] R. Chandran, Gasifier having integrated fuel cell power generation system. United States Patent No.: US8968433B2 (2015).
[101] M. Dudek, P. Tomczyk, Composite fuel for direct carbon fuel cell, Catalysis Today 176 (1) (2011) 388–392.
[102] M. Dudek, Anode materials with increased resistance to the action of sulfur compounds for the solid oxide fuel cells with direct oxidation of carbon.Republic of Poland Patent Application No.: PL410775A1(2016).
[103] M. Dudek, P. Tomczyk, R. Socha, M. Hamaguchi, Use of ash-free “hyper-coal” as a fuel for a direct carbon fuel cell with solid oxide electrolyte, International journal of hydrogen energy 39 (23) (2014) 12386–12394.
[104] M. Dudek, On the utilization of coal samples in direct carbon solid oxide fuel cell technology, Solid State Ionics 271 (2015) 121–127.
[105] A. Kulkarni, F. Ciacchi, S. Giddey, C. Munnings, S. Badwal, J. Kimpton, D. Fini, Mixed ionic electronic conducting perovskite anode for direct carbon fuel cells, International Journal of Hydrogen Energy 37 (24) (2012) 19092–19102.
[106] C. Munnings, A. Kulkarni, S. Giddey, S. Badwal, Biomass to power conversion in a direct carbon fuel cell, International Journal of Hydrogen Energy 39 (23) (2014) 12377–12385.
[107] A. C. Rady, S. Giddey, A. Kulkarni, S. P. Badwal, S. Bhattacharya, Degradation mechanism in a direct carbon fuel cell operated with demineralised brown coal, Electrochimica Acta 143 (2014) 278–290.
[108] A. C. Rady, S. Giddey, A. Kulkarni, S. P. Badwal, S. Bhattacharya, B. P. Ladewig, Direct carbon fuel cell operation on brown coal, Applied Energy 120 (2014) 56–64.
[109] S. Giddey, A. Kulkarni, C. Munnings, S. Badwal, Performance evaluation of a tubular direct carbon fuel cell operating in a packed bed of carbon, Energy 68 (2014) 538–547.
[110] A. Kulkarni, S. Giddey, S. Badwal, G. Paul, Electrochemical performance of direct carbon fuel cells with titanate anodes, Electrochimica Acta 121 (2014) 34–43.
[111] S. Giddey, A. Kulkarni, C. Munnings, S. Badwal, Composite anodes for improved performance of a direct carbon fuel cell, Journal of Power Sources 284 (2015) 122–129.
[112] A. C. Rady, S. Giddey, A. Kulkarni, S. P. Badwal, S. Bhattacharya, Direct carbon fuel cell operation on brown coal with a ni-gdc-ysz anode, Electrochimica Acta 178 (2015) 721–731.
[113] B. Yang, R. Ran, Y. Zhong, C. Su, M. O. Tadé, Z. Shao, A carbon–air battery for high power generation, Angewandte Chemie International Edition 54 (12) (2015) 3722–3725.
[114] Y. Wu, C. Su, C. Zhang, R. Ran, Z. Shao, A new carbon fuel cell with high power output by integrating with in situ catalytic reverse boudouard reaction, Electrochemistry Communications 11 (6) (2009) 1265–1268.
[115] S. Nürnberger, R. Bußar, B. Franke, U. Stimming, Effiziente und umweltfreundliche nutzung von kohlenstoff zur elektrizitätserzeugung (vorgetragen von u. stimming), in: Energie - Perspektiven für die Zukunft. Vorträge der Hamburger Tagung, 2009, pp. 17–28.
[116] S. Nürnberger, R. Bußar, P. Desclaux, B. Franke, M. Rzepka, U. Stimming, Direct carbon conversion in a sofc-system with a non-porous anode, Energy & Environmental Science 3 (1) (2010) 150–153.
[117] P. Desclaux, H. Schirmer, M. Woiton, E. Stern, M. Rzepka, Influence of the carbon/anode interaction on direct carbon conversion in a sofc, Int J Electrochem Sci 8 (2013) 9125–9132.
[118] J. Dong, Z. Cheng, S. Zha, M. Liu, Identification of nickel sulfides on ni–ysz cermet exposed to h2 fuel containing h2s using raman spectroscopy, Journal of Power Sources 156 (2) (2006) 461–465.
[119] M. Konsolakis, G. Marnellos, A. Al-Musa, N. Kaklidis, I. Garagounis, V. Kyriakou, Carbon to electricity in a solid oxide fuel cell combined with an internal catalytic gasification process, Chinese Journal of Catalysis 36 (4) (2015) 509–516.
[120] N. Kaklidis, V. Kyriakou, G. Marnellos, R. Strandbakke, A. Arenillas, J. Menéndez, M. Konsolakis, Effect of fuel thermal pretreament on the electrochemical performance of a direct lignite coal fuel cell, Solid State Ionics 288 (2016) 140–146.
[121] X. Zhu, Y. Li, Z. Lü, Continuous conversion of biomass wastes in a la0. 75sr0. 25cr0. 5mn0. 5o3–_ based carbon–air battery, International Journal of Hydrogen Energy 41 (9) (2016) 5057–5062.
[122] K. Xu, C. Chen, H. Liu, Y. Tian, X. Li, H. Yao, Effect of coal based pyrolysis gases on the performance of solid oxide direct carbon fuel cells, International Journal of Hydrogen Energy 39 (31) (2014) 17845–17851.
[123] P. Li, Y. Zhao, B. Yu, J. Li, Y. Li, Improve electrical conductivity of reduced la2ni0. 9fe0. 1o4+ _ as the anode of a solid oxide fuel cell by carbon deposition, International Journal of Hydrogen Energy 40 (31) (2015) 9783–9789.
[124] M. Lebreton, B. Delanoue, E. Baron, F. Ricoul, A. Kerihuel, A. Subrenat, O. Joubert, A. L. G. La Salle, Effects of carbon monoxide, carbon dioxide, and methane on nickel/yttria-stabilized zirconia-based solid oxide fuel cells performance for direct coupling with a gasifier, International Journal of Hydrogen Energy 40 (32) (2015) 10231–10241.
[125] G. Cinti, K. Hemmes, Integration of direct carbon fuel cells with concentrated solar power, international journal of hydrogen energy 36 (16) (2011) 10198–10208.
[126] T. Horita, N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, An investigation of anodes for direct-oxidation of carbon in solid oxide fuel cells, Journal of the Electrochemical Society 142 (8) (1995) 2621–2624.
[127] M. Ihara, K. Matsuda, H. Sato, C. Yokoyama, Solid state fuel storage and utilization through reversible carbon deposition on an sofc anode, Solid State Ionics 175 (1-4) (2004) 51–54.
[128] D. Niakolas, J. Ouweltjes, G. Rietveld, V. Dracopoulos, S. Neophytides, Au-doped ni/gdc as a new anode for sofcs operating under rich ch4 internal steam reforming, international journal of hydrogen energy 35 (15) (2010) 7898–7904.
[129] B. C. Steele, Survey of materials selection for ceramic fuel cells ii. cathodes and anodes, Solid State Ionics 86 (1996) 1223–1234.
[130] Y. Gong, K. Huang, Study of a renewable biomass fueled sofc: the effect of catalysts, International Journal of Hydrogen Energy 38 (36) (2013) 16518–16523.
[131] N. Keisuke, T. Yoshihisa, Rechargeable direct carbon fuel cell. Japanese Patent Application Publication No.: JP2010003568A (2010).
[132] S. Chuang, Carbon-based fuel cell-final report, Tech. rep., Department of Chemical Engineering, The University of Akron (2006).
[133] B. Habibzadeh, Understanding carbon monoxide oxidation in solid oxide fuel cells using nickel patterned anode, Ph.D. thesis, University of Maryland, College Park (2007).
[134] J. Mizusaki, H. Tagawa, Y. Miyaki, S. Yamauchi, K. Fueki, I. Koshiro, K. Hirano, Kinetics of the electrode reaction at the co-co2, porous pt/stabilized zirconia interface, Solid State Ionics 53 (1992) 126–134.
[135] G. O. Lauvstad, R. Tunold, S. Sunde, Electrochemical oxidation of co on pt and ni point electrodes in contact with an yttria-stabilized zirconia electrolyte i. modeling of steady-state and impedance behavior, Journal of The Electrochemical Society 149 (12) (2002) E497–E505.
[136] D. Penchini, G. Cinti, G. Discepoli, E. Sisani, U. Desideri, Characterization of a 100 w sofc stack fed by carbon monoxide rich fuels, international journal of hydrogen energy 38 (1) (2013) 525–531.
[137] O. Costa-Nunes, R. J. Gorte, J. M. Vohs, Comparison of the performance of cu–ceo2–ysz and ni–ysz composite sofc anodes with h2, co, and syngas, Journal of power sources 141 (2) (2005) 241–249.
[138] T. M. Gür, L. Siewen, Multi-functional cermet anodes for high temperature fuel cells. United States Patent Application Publication No.: US2008124613A1 (2008).
[139] R. Mukundan, E. L. Brosha, F. H. Garzon, Sulfur tolerant anodes for sofcs, Electrochemical and Solid-State Letters 7 (1) (2004) A5–A7.
[140] T. M. Gür, Catalytic oxide anodes for high temperature fuel cells. United States Patent Application Publication No.: US2008124265A1 (2008).
[141] S. Wang, R. Liu, C. Zhao, J. Li, Solid electrolyte direct carbon fuel cell. Republic of China Patent Application Publication No.: CN101540411A (2009).
[142] Y. Zhang, J. Liu, J. Yin, W. Yuan, J. Sui, Fabrication and performance of cone-shaped segmented-in-series solid oxide fuel cells, International Journal of Applied Ceramic Technology 5 (6) (2008) 568–573.
[143] P. Jacobson, M. C. Tucker, T. Z. Sholklapper, Fuel cell system. International Patent Application Publication No.: WO2011059468A1 (2011).
[144] K. Badyda, J. Kupecki, J. Milewski, Modelling of integrated gasification hybrid power systems, Rynek Energii 88 (3) (2010) 74–79.
[145] R. D. Brost, Carbon-based fuel cell system. United States Patent Application Publication No.: US2012082910A1 (2012).
Uwagi
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-a5cc5357-e32f-4b26-a692-bd5c3b0557b9
Identyfikatory