Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Measurement Automation Monitoring

Tytuł artykułu

Correction of the dynamic errors of a gas sensor based on the dynamic model with averaged parameters

Autorzy Urzędniczok, H. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The paper presents a numerical method of dynamic error correction applied to a measuring transducer of gas concentration with a typical sensor based on tin dioxide. The work describes research of the dynamic properties of the transducer. Its response time is approximately 8 to 10 minutes, which may be not acceptable in many applications. A parametric model of the transducer dynamics has been developed and an adequate correction algorithm is proposed. The obtained results of the dynamic correction based on the proposed method are compared with those achieved previously by applying a neural network algorithm. Despite the simplicity of the used model, the proposed method allows a significant decrease in the transducer response time.
Słowa kluczowe
EN gas sensor   response time   dynamic properties   dynamic error correction  
Wydawca Wydawnictwo PAK
Czasopismo Measurement Automation Monitoring
Rocznik 2016
Tom Vol. 62, No. 7
Strony 214--217
Opis fizyczny Bibliogr. 17 poz., rys., tab., wykr., wzory
autor Urzędniczok, H.
  • Silesian University of Technology, Institute of Measurement Science, Electronics And Control 10 Akademicka St., 44-100 Gliwice, Poland,
[1] Llobet E., Vilanova X., Brezmes J., Sueiras J. E., Alcubilla R. and Correig X.: Steady-state and transient behavior of thick-film tin oxide sensors in the presence of gas mixtures. Journal of the Electrochemical Society, May 1998, Volume 145, Issue 5, pp. 1772-1779.
[2] Buck A. L., Roberts M. I., Overfelt R. A., Prorok B. C. and Crumpler M. S.: Transient response characteristics of electrochemical carbon monoxide sensors. 43rd International Conference on Environmental Systems, (Conference Paper), ICES 2013, Vail, CO; United States; July 14-18, 2013.
[3] Guerin J., Bendahan A. and Aguir K.: A dynamic response model for the WO3-based ozone sensors. Sensors and Actuators B-chemical, Jan. 15, 2008, Volume 128, Issue 2, pp. 462-467.
[4] Matsunaga N., Sakai G., Shimanoe K. and Yamazoe N.: Formulation of gas diffusion dynamics for thin film semiconductor gas sensor based on simple reaction-diffusion equation. Sensors and Actuators B-chemical, Nov. 15, 2003, Volume 96, Issue 1-2, pp. 226-233.
[5] Chou J.: Hazardous Gas Monitors. A Practical Giude to Selection. Operation and Application. McGraw-Hill Book Company, New York, 2000.
[6] Bogacz R., Krupanek B.: Double channel dynamic error correction of methane sensor. XXI IMEKO World Congress “Measurement in Research and Industry”, August 30 - September 4, 2015, Prague, Czech Republic.
[7] Basu S. A, Wang Y.-H. A. B., Ghanshyam C. A. and Kapur P. AQ.: Fast response time alcohol gas sensor using nanocrystalline F-doped SnO2 films derived via sol-gel method. Bulletin of Materials Science, August 2013, Volume 36, Issue 4, pp 521-53.
[8] Stamenov P., Madathil R., Coey J. M. D.: Dynamic response of ammonia sensors constructed from polyaniline nanofibre films with varying morphology. Sensors and Actuators B-Chemical, Jan. 3, 2012, Volume 161 Issue 1, pp. 989-999.
[9] Gutierrez-Osuna R., Gutierrez-Galvez A., Powar N.: Transient response analysis for temperature-modulated chemoresistors. Sensors and Actuators B-Chemical, Aug. 1, 2003, Volume 93, Issue 1-3, pp. 57-66.
[10] Ngo K. A., Lauque P. and Aguir K.: Identification of toxic gases using steady-state and transient responses of gas sensor array. Sensors and Materials, 2006, Volume 18 Issue 5, pp. 251-260.
[11] Gajdosik L.: The concentration measurement with SnO2 gas sensor operated in the dynamic regime. Sensors and Actuators B-Chemical, May 13, 2005, Volume 106 Issue 2, pp. 691-699.
[12] Jakubik W., Urbanczyk, M.: SAW hydrogen sensor with a bilayer structure based on interaction speed. Sensors and Actuators B-chemical, 2005, Volume 106 Issue 2, pp. 602-608.
[13] Sobanski T., Modrak I., Nitsch K. and Licznerski B.W.: Application of sensor dynamic response analysis to improve the accuracy of odour-measuring systems. Measurement Science & Technology, Jan. 2006, Volume 17 Issue 1, pp. 1-5.
[14] Nalepa J.: Correction of Dynamic Error by the „Blind” Method. A Differential Algorithm Simulation Study”, Proc. of 10th IMEKO TC7 Int. Symp. on Advances of Measurement Science, 2004, pp.109-114.
[15] Roj J., Urzędniczok H.: Correction of gas sensor dynamic errors by means of neural networks. Measurement Automation Monitoring, Dec. 2015, vol. 61, no. 12, p. 538-541.
[16] Urzędniczok H.: Measuring transducer of gas concentration in gas mixture. Przegląd Elektrotechniczny (Electrical Review), 2012, Volume 86, Issue 10, pp. 114-117 (in Polish).
[17] Urzędniczok H.: A numerical method of correcting the influence of the additional quantities for nonselective sensors, Proceedings of the 19th IMEKO TC-4 Symposium “Measurements of Electrical Quantities”, Barcelona, July 18-19, 2013, p. 367-371.
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-a510e0a2-f7b4-4181-8be8-d67389cf3be1