Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-a44d6897-759d-463c-bc5e-d84df744132f

Czasopismo

Materials Science Poland

Tytuł artykułu

Effect of NaOH concentration on optical properties of zinc oxide nanoparticles

Autorzy Koutu, V.  Shastri, L.  Malik, M. M. 
Treść / Zawartość http://www.materialsscience.pwr.wroc.pl/
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In the present work, powder zinc oxide samples were prepared by varying NaOH concentration (0.1 M – 0.4 M) using wet-chemical co-precipitation method. As-synthesized ZnO was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), photoluminescence (PL) and Raman spectroscopy. Formation of hexagonal wurtzite structure of the ZnO samples has been revealed from XRD studies. This study further suggests reduction in crystallite size from 40 nm to 23 nm with an increase in NaOH concentration which is confirmed by FESEM. PL and Raman spectroscopy studies of these samples show significant peak shift towards the higher and lower energy respectively, with maximum PL emission between 400 nm and 470 nm region of the visible spectrum. Noticeable inverse relationship between optical properties of ZnO nanoparticles and NaOH concentration may be attributed to the rapid nucleation during the synthesis process. With these remarkable properties, ZnO nanoparticles may find applications in nanoelectronic devices, sensors, nanomedicine, GATE dielectrics, photovoltaic devices, etc.
Słowa kluczowe
EN NaOH concentration   ZnO nanoparticles   peak shift  
Wydawca Springer
Czasopismo Materials Science Poland
Rocznik 2016
Tom Vol. 34, No. 4
Strony 819--827
Opis fizyczny Bibliogr. 32 poz., rys., tab.
Twórcy
autor Koutu, V.
  • Nanotechnology Research Laboratory, Department of Physics, Maulana Azad National Institute of Technology, Bhopal (M.P.), India, 123105005_aibhav@manit.ac.in
autor Shastri, L.
  • Nanotechnology Research Laboratory, Department of Physics, Maulana Azad National Institute of Technology, Bhopal (M.P.), India
autor Malik, M. M.
  • Nanotechnology Research Laboratory, Department of Physics, Maulana Azad National Institute of Technology, Bhopal (M.P.), India
Bibliografia
[1] ZHANG X., QIN J., XUE Y., YU P., ZHANG B., WANG L., LIU R., Sci. Rep.-UK, 4 (2014), 4596.
[2] XU S., WANG Z.L., Nano Res., 4 (2011), 1013.
[3] WILLANDER M., NUR O., SADAF J.R., QADIR M.I., ZAMAN S., ZAINELABDIN A., BANO N., HUSSAIN I., Materials, 3 (2010), 2643.
[4] KOŁODZIEJCZAK-RADZIMSKA A., JESIONOWSKI T., Materials, 7 (2014), 2833.
[5] UMAR A., HAHN Y.B., ZnO Nanoparticles: Growth, Properties, and Applications, in: UMAR A., HAHN Y.B. (Eds.), Metal Oxide Nanostructures and Their Applications, American Scientific Publishers, California, 2010, p. 1.
[6] PODPORSKA-CARROLL J., MYLES A., QUILTY B., MCCORMACK D.E., FAGAN R., HINDER S.J., DIONYSIOU D.D., PILLAI S.C., J. Hazard. Mater., (2015).
[7] KUNDU S., Colloid. Surface. A, 446 (2014), 199.
[8] CHAND P., GAUR A., KUMAR A., GAUR U.K., Appl. Surf. Sci., 356 (2015), 438.
[9] JYOTI M., VIJAY D., RADHA S., IJSRP, 3 (2013), 1.
[10] NARAYANAN G.N., GANESH R.S., KARTHIGEYAN A., Thin Solid Films, 598 (2016), 39.
[11] KUMAR S.S., VENKATESWARLU P., RAO V.R., RAO G.N., Int. Nano Lett., 3 (2013), 1.
[12] PHOLNAK C., CHITNARONG S., SUMETHA S., DAVID J.H., Mater. Res., 17 (2014), 405.
[13] BAGABAS A., ALSHAMMARI A., ABOUD M.FA, KOSSLICK H., Nanoscale Res. Lett., 8 (2013) 1.
[14] WAHAB R., ANSARI S.G., KIM Y.S., SONG M., SHIN H.S., Appl. Surf. Sci., 255 (2009), 4891.
[15] PRADHAN P., JUAN C.A., MONSERRAT B., Int. J. Photoenergy, 2012 (2012), 1.
[16] SONIA S., JAYRAM N.D., SURESH KUMAR P., MANGALARAJ D., PONPANDIAN N., VISWANATHAN C., Superlattice. Microst., 66 (2014), 1.
[17] MOAZZEN M.A.M., SEYED M.B., FARSHAD T., Appl. Nanosci., 3 (2013), 295.
[18] ANANDHAVELU S., THAMBIDURAI S., Mater. Chem. Phys., 131 (2011), 449.
[19] POLSONGKRAM D., CHAMNINOK P., PUKIRD S., CHOW L., LUPAN O., CHAI G., KHALLAF H., PARK S., SCHULTE A., Physica B, 403 (2008), 3713.
[20] KAHOULI M., BARHOUMI A., BOUZID A., ALHAJRY A., GUERMAZI S., Superlattice. Microst., 85 (2015), 7.
[21] SAMANTA P.K., PATRA S.K., GHOSH A., CHAUDHURI P.R., Int. J. Nanosci. Nanotechno., 1 (2009), 81.
[22] BINDU P., THOMAS S., J. Theor. Appl. Phys., 8 (2014), 123.
[23] HASSAN M.M., KHAN W., AZAM A., NAQVI A.H., J. Lumin., 145 (2014), 160.
[24] ZAK A.K., MAJID W.H.A., ABRISHAMI M.E., YOUSEFI R., Solid State Sci., 13 (2011), 251.
[25] NAVIN K., KURCHANIA R., Appl. Phys. A-Mater., 121 (2015), 1155.
[26] MULLIN J.W., Crystallization, Elsevier, London, 2001.
[27] ZHANG R., YIN P.G., WANG N., GUO L., Solid State Sci., 11 (2009), 865.
[28] ALIM K.A., FONOBEROV V.A., BALANDIN, A.A., Appl. Phys. Lett., 86 (2005), 53103.
[29] ARTUS L., CUSCO R., ALARCON-LLADO E., GONZALEZ-DIAZ G., MARTIL I., JIMENEZ J., WANG B., CALLAHAN M., Appl. Phys. Lett., 90 (2007), 181911.
[30] CAO W., DU W., J. Lumin., 124 (2007), 260.
[31] ZEFERINO R.S., FLORES M.B., PAL U., J. Appl. Phys., 109 (2011), 014308.
[32] FONOBEROV V.A., BALANDIN A.A., Properties of GaN and ZnO quantum dots, in: BALANDIN A.A., WANG K.L. (Eds.), Handbook of Semiconductor Nanostructures and Nanodevices, American Scientific Publishers, Los Angeles, 2006, p. 119.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-a44d6897-759d-463c-bc5e-d84df744132f
Identyfikatory
DOI 10.1515/msp-2016-0119