PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of the Models of the Air Gauge Static Characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article, the authors analyze and discuss several models used to the calculation of air gauge characteristics. The model based on the actual mass flow (which is smaller than the theoretical one) was proposed, too. Calculations have been performed with a dedicated software with the second critical parameters included. The air gauge static characteristics calculated with 6 different models were compared with the experimental data. It appeared that the second critical parameters model (SCP) provided the characteristics close to the experimental ones, with an error of ca. 3% within the air gauge measuring range.
Rocznik
Strony
93--110
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Poznan University of Technology, Institute of Mechanical Technology, Division of Metrology and Measurement Systems, Piotrowo 3, 60-965 Poznan, Poland, czeslaw.jermak@put.poznan.pl
  • Poznan University of Technology, Chair of Thermal Engineering, Piotrowo 3, 60-965 Poznan, Poland
  • Poznan University of Technology, Institute of Mechanical Technology, Division of Metrology and Measurement Systems, Piotrowo 3, 60-965 Poznan, Poland
autor
  • Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland, m.rucki@uthrad.pl
Bibliografia
  • [1] M. Mennesson. High precision measurement method of lengths and thicknesses. Comptes Rendus des Seances de l’Academie des Sciences, 194(25.4.1932):1459–1461, 1932.
  • [2] W.J. Gluchow and A.A. Tupolew. Non-contact pneumatic measuring control devices for the production of workpieces with discontinuous surfaces. Feingerätetechnik, 23(2):69–73, 1974. (in German).
  • [3] E.I. Ped. Optimization of the constructional elements choice of the air gauges designed for the dynamic measurements. Measurement Techniques, 7:29–31, 1981. (in Russian).
  • [4] F.T. Farago and Curtis M.A. Handbook of Dimensional Measurement. Industrial Press Inc., New York, 1994.
  • [5] G. Schuetz. Pushing the limits of air gaging-and keeping them there. Quality, 54(7):22–26, 2015.
  • [6] G. Schuetz. Air gaging gets better with age. Quality, 3:28–32, 2008.
  • [7] L. Finkelstein. Reflections on a century of measurement science as an academic discipline. Metrology and Measurement Systems, 14(4):635–638, 2007.
  • [8] M. Rucki, B. Barisic, and G. Varga. Air gauges as a part of the dimensional inspection systems. Measurement, 43(1):83–91, 2010. doi: 10.1016/j.measurement.2009.07.001.
  • [9] T. Janiczek and J. Janiczek. Linear dynamic system identification in the frequency domain using fractional derivatives. Metrology and Measurement Systems, 17(2):279–288, 2010. 10.2478/v10178-010-0024-6.
  • [10] V.B. Bokov. Pneumatic gauge steady-state modelling by theoretical and empirical methods. Measurement, 44(2):303–311, 2011. doi: 10.1016/j.measurement.2009.01.015.
  • [11] B. Dobrowolski, Z. Kabza, and A. Spyra. Digital simulation of air flow through a nozzle of pneumatic gauge. In Proc. 33rd Annual Conference JUREMA, pages 67–70, 1988.
  • [12] M.N. Abhari, M. Ghodsian, M. Vaghefi, and N. Panahpur. Experimental and numerical simulation of flow in a 90 degrees bend. Flow Measurement and Instrumentation, 21(3):292–298, 2010. doi: 10.1016/j.flowmeasinst.2010.03.002.
  • [13] J. Peng, X. Fu, and Y. Chen. Response of a swirlmeter to oscillatory flow. Flow Measurement and Instrumentation, 19(2):107–115, 2008. doi: 10.1016/j.flowmeasinst.2007.10.002.
  • [14] C. Crnojevic, G. Roy, A. Bettahar, and P. Florent. The influence of the regulator diameter and injection nozzle geometry on the flow structure in pneumatic dimensional control systems. Journal of Fluids Engineering, 119:609–615, 1997. doi: 10.1115/1.2819288.
  • [15] C. Jermak, editor. Theory and Practice of Air Gauging. Poznan University of Technology, 2011.
  • [16] T. Kiczkowiak and S. Grymek. Critical pressure ratio b as defined in iso 6358 and iso 6953 standards. Pomiary Automatyka Kontrola (Measurement, Automation, Monitoring), 57:559–562, 2011. (in Polish).
  • [17] A Cellary and C.J. Jermak. Dynamics of a cascade pneumatic sensor for length measurements. In Proc. of Optoelectronic and Electronic Sensors II, pages 36–39. International Society for Optics and Photonics, 1997. doi: 10.1117/12.266719.
  • [18] A.V. Deych. Technical gasodynamics. Gosenergoizdat, Moscow, 1961. (in Russian).
  • [19] M. Kabacinski, C. T. Lachowicz, and J. Pospolita. Numerical analysis of flow averaging tubes in the vortex-shedding regime. Archive of Mechanical Engineering, 60(2):283–297, 2013. doi:10.2478/meceng-2013-0018.
  • [20] Koscielny W. and Wozniak C. Models of the flow characteristics of the pneumatic restrictors. In Proc. PNEUMA’95, pages 73–82, 1995. (in Polish).
  • [21] Koscielny W. and Wozniak C. Experimental evaluation of the models of the pneumatic restrictors flow characteristics. In Proc. PNEUMA'95, pages 83–92, 1995. (in Polish).
  • [22] Automation of the pneumatic dimensional measurement in mechanical engineering. Mashinostroyeniye, Moscow, 1964. (in Russian).
  • [23] C.J. Jermak. Methods of shaping the metrological characteristics of air gages. Strojniski Vestnik/Journal of Mechanical Engineering, 56(6):385–390, 2010.
  • [24] R.J. Soboczynski. Investigations on the metrological properties of high pressure air gauges. PhD thesis, Wrocław Technical University, 1977. (in Polish).
  • [25] Calculation of the high pressure air gauges characteristics. Journal Measuring Techniques, 6:107, 1971.
  • [26] Guide to the expression of uncertainty in measurement. Warszawa, Główny Urząd Miar, 1999. (in Polish).
  • [27] C.J. Jermak and M. Rucki. Air gauging: Static and dynamic characteristics. IFSA, Barcelona, Spain, 2012.
  • [28] Cz.J. Jermak and M. Rucki. Air gauging: Still some room for development. AASCIT Communication, 2(2):29–34, 2015.
Uwagi
EN
1. The investigation described in this work were supported by the Ministry of Science and Higher Education, Poland.
PL
2. Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4156d88-62ee-4808-9e93-d2296184907e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.