Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-a3e2d920-032c-4a62-ab87-0fc5400c23c9

Czasopismo

Oceanologia

Tytuł artykułu

Deposition, return flux, and burial rates of nitrogen and phosphorus in the sediments of two high-Arctic fjords

Autorzy Koziorowska, K.  Kuliński, K.  Pempkowiak, J. 
Treść / Zawartość http://www.iopan.gda.pl/oceanologia/ http://www.sciencedirect.com/journal/oceanologia
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The aim of this study was to determine the burial rates of nitrogen (N) and phosphorus (P) in the sediments of two high-latitude fjords: Hornsund and Kongsfjorden (Spitsbergen). Both deposition to sediments and the return flux from sediments to the water column of the various species of these elements were, therefore, quantified. The burial rate was then calculated as the difference between deposition and return flux. The required concentrations of N and P species were measured in surface sediments, in pore water extracted from the sediments, and in the above-bottom water at sampling stations situated along the axes of the fjords. Annual deposition to sediments ranged between 2.3-8.3 g m−2for N and 0.9-2.8 g m−2for P. The nitrogen return fluxes ranged from 0.12 to 1.46 g m−2y−1. At most stations, the N flux was predominantly of dissolved organic (about 60-70%) rather than inorganic N. The P return flux varied between 0.01 and 0.11 g m−2y−1, with organic species constituting 60-97%. The N and P burial rates differed between fjords: 2.3-7.9 g N m−2y−1and 0.9-2.8 g P m−2y−1in Hornsund vs. 0.9-1.3 N g m−2y−1and 1.0-1.2 g P m−2y−1in Kongsfjorden. This was accompanied by a different efficiency of N and P burial – higher in Hornsund than in Kongsfjorden, in both cases. This suggests differences in the quality and quantity of N and P organic species deposited to sediments and therefore differences in the intensity of their mineralization and/or decomposition.
Słowa kluczowe
EN Hornsund   Kongsfjorden   sedimentary nitrogen   sedimentary phosphorus   pore water   concentrations   nutrients  
Wydawca Polish Academy of Sciences, Institute of Oceanology
Elsevier
Czasopismo Oceanologia
Rocznik 2018
Tom No. 60 (4)
Strony 431--445
Opis fizyczny Bibliogr. 75 poz., mapy, tab., wykr.
Twórcy
autor Koziorowska, K.
autor Kuliński, K.
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor Pempkowiak, J.
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
[1] Alkhatib, M., del Giorgio, P. A., Gelinas, Y., Lehmann, M. F., 2013. Benthic fluxes of dissolved organic nitrogen in the lower St. Lawrence estuary and implications for selective organic matter degradation. Biogeosciences 10 (11), 7609-7622, http://dx.doi.org/10.5194/bg-10-7609-2013.
[2] Alkhatib, M., Schubert, C. J., del Giorgio, P. A., Gelinas, Y., Lehmann, M. F., 2012. Organic matter reactivity indicators in sediments of the St. Lawrence Estuary. Estuar. Coast. Shelf Sci. 102, 36-47, http://dx.doi.org/10.1016/j.ecss.2012.03.002.
[3] Arndt, S., Jorgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D., Regnier, P., 2013. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci. Rev. 123, 53-86, http://dx.doi.org/10.1016/j.earscirev.2013.02.008.
[4] Aspila, K. I., Agemain, H., Chau, A., 1976. A semi-automated method for the determination of inorganic, organic and total phosphorus in sediments. Analyst 101 (1200), 187-197, http://dx.doi.org/10.1039/an9760100187.
[5] Baldwin, D. S., Beattie, A. K., Coleman, L. M., 2001. Hydrolysis of an organophosphate ester by manganese dioxide. Environ. Sci. Technol. 35 (4), 713-716, http://dx.doi.org/10.1021/es001309l.
[6] Benitez-Nelson, C. R., 2000. The biogeochemical cycling of phosphorus in marine systems. Earth Sci. Rev. 51 (1-4), 109-135, http://dx.doi.org/10.1016/S0012-8252(00)00018-0.
[7] Beszczyńska-Moller, A., Węsławski, J. M., Walczowski, W., Zajączkowski, M., 1997. Estimation of glacial meltwater discharge into Svalbard coastal waters. Oceanologia 39 (3), 289-298.
[8] Blackburn, T. H., Hall, P. O. J., Hulth, S., Landen, A., 1996. Organic-N loss by efflux and burial associated with a low efflux of inorganic N and with nitrate assimilation in Arctic sediments (Svalbard, Norway). Mar. Ecol. Prog. Ser. 141 (1-3), 283-293, http://dx.doi.org/10.3354/meps141283.
[9] Blaszczyk, M., Jania, J. A., Kolondra, L., 2013. Fluctuations of tide-water glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of the 20th century. Pol. Polar Res. 34 (4), 327-352, http://dx.doi.org/10.2478/popore-2013-0024.
[10] Boudreau, B. P., 1997. Molecular/ionic diffusion coefficients. In: Boudreau, B. P. (Ed.), Diagenetic Models and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments. Springer, Berlin-Heidelberg, 96-118.
[11] Burdige, D. J., 2001. Dissolved organic matter in Chesapeake Bay sediment pore waters. Org. Geochem. 32 (4), 487-505, http://dx.doi.org/10.1016/s0146-6380(00)00191-1.
[12] Burdige, D. J., Komada, T., 2015. Sediment pore waters. In: Hansell, D. A., Carlson, C. A. (Eds.), Biogeochemistry of Marine Dissolved Organic Matter. 2nd ed. Elsevier Sci. Publ., San Diego, USA, 535-577.
[13] Burdige, D. J., Zheng, S. L., 1998. The biogeochemical cycling of dissolved organic nitrogen in estuarine sediments. Limnol. Oceanogr. 43 (8), 1796-1813, http://dx.doi.org/10.4319/lo.1998.43.8.1796.
[14] Carroll, J., Zaborska, A., Papucci, C., Schirone, A., Carroll, M. L., Pempkowiak, J., 2008. Accumulation of organic carbon in western Barents Sea sediments. Deep-Sea Res. Pt. II 55 (20-21), 2361-2371, http://dx.doi.org/10.1016/j.dsr2.2008.05.005.
[15] Cha, H. J., Lee, C. B., Kim, B. S., Choi, M. S., Ruttenberg, K. C., 2005. Early diagenetic redistribution and burial of phosphorus in the sediments of the Southwestern East Sea (Japan Sea). Mar. Geol. 216 (3), 127-143, http://dx.doi.org/10.1016/j.mar-geo.2005.02.001.
[16] Cloern, J. E., 2001. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser. 210, 223-253, http://dx.doi.org/10.3354/meps210223.
[17] Comans, R. N. J., Middelburg, J. J., Zonderhuis, J., Woittiez, J. R. W., De Lange, G., Das, H. A., Van der Weijden, C. H., 1989. Mobilisation of radiocaesium in pore water of lake sediments. Nature 339, 367-369, http://dx.doi.org/10.1038/339367a0.
[18] Drewnik, A., Weslawski, J. M., Wlodarska-Kowalczuk, M., Lacka, M., Prominska, A., Zaborska, A., Gluchowska, M., 2016. From the worm's point of view. I: Environmental settings of benthic ecosystems in Arctic fjord (Hornsund, Spitsbergen). Pol. Biol. 39 (8), 1411-1424, http://dx.doi.org/10.1007/s00300-015-1867-9.
[19] Enoksson, V., 1993. Nutrient recycling by coastal sediments — effects of added algal material. Mar. Ecol. Prog. Ser. 92 (3), 245-254, http://dx.doi.org/10.3354/meps092245.
[20] Fang, T. H., Chen, J. L., Huh, C. A., 2007. Sedimentary phosphorus species and sedimentation flux in the East China Sea. Cont. Shelf Res. 27 (10-11), 1465-1476, http://dx.doi.org/10.1016/j.csr.2007.01.011.
[21] Fernandez-Mendez, M., Katlein, C., Rabe, B., Nicolaus, M., Peeken, I., Bakker, K., Flores, H., Boetius, A., 2015. Photosynthetic production in the central Arctic Ocean during the record sea-ice minimum in 2012. Biogeosciences 12, 3525-3549, http://dx.doi.org/10.5194/bg-12-3525-2015.
[22] Filippelli, G. M., 2001. Carbon and phosphorus cycling in anoxic sediments of the Saanich Inlet, British Columbia. Mar. Geol. 174 (1-4), 307-321, http://dx.doi.org/10.1016/s0025-3227(00)00157-2.
[23] Gihring, T. M., Lavik, G., Kuypers, M. M. M., Kostka, J. E., 2010. Direct determination of nitrogen cycling rates and pathways in Arctic fjord sediments (Svalbard, Norway). Limnol. Oceanogr. 55 (2), 740-752, http://dx.doi.org/10.4319/lo.2009.55.2.0740.
[24] Glud, R. N., Hoffmann, F., Canfield, D. E., 1998. Benthic mineralization and exchange in Arctic sediments (Svalbard, Norway). Mar. Ecol. Prog. Ser. 173, 237-251, http://dx.doi.org/10.3354/meps173237.
[25] Holcombe, B. L., Keil, R. G., Devol, A. H., 2001. Determination of pore-water dissolved organic carbon fluxes from Mexican margin sediments. Limnol. Oceanogr. 46 (2), 298-308, http://dx.doi.org/10.4319/lo.2001.46.2.0298.
[26] Hulth, S., Hall, P. O. J., Blackburn, T. H., Landen, A., 1996. Arctic sediments (Svalbard): pore water and solid phase distributions of C, N, P and Si. Polar Biol. 16 (6), 447-462.
[27] Kemp, W. M., Sampou, P., Caffrey, J., Mayer, M., Henriksen, K., Boynton, W. R., 1990. Ammonium recycling versus denitrification in Chesapeake Bay sediments. Limnol. Oceanogr. 35 (7), 1545-1563, http://dx.doi.org/10.4319/lo.1990.35.7.1545.
[28] Kim, J. H., Peterse, F., Willmott, V., Kristensen, D. K., Baas, M., Schouten, S., Damste, J. S. S., 2011. Large ancient organic matter contributions to Arctic marine sediments (Svalbard). Limnol. Oceanogr. 56 (4), 1463-1474, http://dx.doi.org/10.4319/lo.2011.56.4.1463.
[29] Knies, J., Brookes, S., Schubert, C. J., 2007. Re-assessing the nitrogen signal in continental margin sediments: new insights from the high northern latitudes. Earth Planet Sci. Lett. 253 (3-4), 471-484, http://dx.doi.org/10.1016/j.epsl.2006.11.008.
[30] Kotwicki, L., Grzelak, K., Opaliński, K., Wesławski, J. M., 2018. Total benthic oxygen uptake in two Arctic fjords (Spitsbergen) with different hydrological regimes. Oceanologia 60 (2), 107-113, http://dx.doi.org/10.1016/j.oceano.2017.11.005.
[31] Koziorowska, K., Kulinski, K., Pempkowiak, J., 2016. Sedimentary organic matter in two Spitsbergen fjords: terrestrial and marine contributions based on carbon and nitrogen contents and stable isotopes composition. Cont. Shelf Res. 113, 38-46, http://dx.doi.org/10.1016/j.csr.2015.11.010.
[32] Koziorowska, K., Kuliński, K., Pempkowiak, J., 2017. Distribution and origin of inorganic and organic carbon in the sediments of Kongsfjorden, Northwest Spitsbergen, European Arctic. Cont. Shelf Res. 150, 27-35, http://dx.doi.org/10.1016/j.csr.2017.08.023.
[33] Koziorowska, K., Kuliński, K., Pempkowiak, J., 2018. Comparison of the burial rate estimation methods of organic and inorganic carbon and quantification of carbon burial in two high Arctic fjords. Oceanologia, http://dx.doi.org/10.1016/j.oceano.2018.02.005.
[34] Kuliński, K., Kędra, M., Legeżyńska, J., Głuchowska, M., Zaborska, A., 2014. Particulate organic matter sinks and sources in high Arctic fjord. J. Mar. Syst. 139, 27-37, http://dx.doi.org/10.1016/j.jmarsys.2014.04.018.
[35] Lehtoranta, J., Ekholm, P., Wahlstrom, S., Tallberg, P., Uusitalo, R., 2015. Labile organic carbon regulates phosphorus release from eroded soil transported into anaerobic coastal systems. Ambio 44 (2), S263-S273, http://dx.doi.org/10.1007/s13280-014-0620-x.
[36] Loh, A. N., Bauer, J. E., 2000. Distribution, partitioning and fluxes of dissolved and particulate organic C, N and P in the eastern North Pacific and Southern Oceans. Deep Sea Res. Pt. 1 47 (12), 2287-2316, http://dx.doi.org/10.1016/S0967-0637(00)00027-3.
[37] Lomstein, B. A., Jensen, A. G. U., Hansen, J. W., Andreasen, J. B., Hansen, L. S., Berntsen, J., Kunzendorf, H., 1998. Budgets of sediment nitrogen and carbon cycling in the shallow water of Knebel Vig, Denmark. Aquat. Microb. Ecol. 14 (1), 69-80, http://dx.doi.org/10.3354/ame014069.
[38] Lu, X. X., Song, J. M., Li, X. G., Yuan, H. M., Zhan, T. R., Li, N., Gao, X. L., 2005. Geochemical characteristics of nitrogen in the southern Yellow Sea surface sediments. J. Mar. Syst. 56 (1-2), 17-27, http://dx.doi.org/10.1016/j.jmarsys.2004.06.009.
[39] Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Maranon, E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A., Ulloa, O., 2013. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701-710, http://dx.doi.org/10.1038/ngeo1765.
[40] Moskalik, M., Ćwiąkała, J., Szczuciński, W., Dominiczak, A., Głowacki, O., Wojtysiak, K., Zagórski, P., 2018. Spatiotemporal changes in the concentration and composition of suspended particulate matter in front of Hansbreen, a tidewater glacier in Svalbard. Oceanologia, http://dx.doi.org/10.1016/j.oceano.2018.03.001.
[41] Muller, P. J., 1977. C-N ratios in Pacific deep-sea sediments — effect of inorganic ammonium and organic nitrogen-compounds sorbed by clays. Geochim. Cosmochim. Acta 41 (6), 765-776, http://dx.doi.org/10.1016/0016-7037(77)90047-3.
[42] Muzuka, A. N. N., Hillaire-Marcel, C., 1999. Burial rates of organic matter along the eastern Canadian margin and stable isotope constraints on its origin and diagenetic evolution. Mar. Geol. 160 (3-4), 251-270, http://dx.doi.org/10.1016/S0025-3227(99)00022-5.
[43] Nausch, M., Nausch, G., Wasmund, N., 2004. Phosphorus dynamics during the transition from nitrogen to phosphate limitation in the central Baltic Sea. Mar. Ecol. Prog. Ser. 266, 15-25, http://dx.doi.org/10.3354/meps266015.
[44] Nixon, S. W., 1995. Coastal marine eutrophication — a definition, social causes, and future concerns. Ophelia 41, 199-219, http://dx.doi.org/10.1080/00785236.1995.10422044.
[45] Piechura, J., Beszczynska-Moller, A., Osinski, R., 2001. Volume, heat and salt transport by the West Spitsbergen Current. Polar Res. 20 (2), 233-240, http://dx.doi.org/10.1111/j.1751-8369.2001.tb00061.x.
[46] Piwosz, K., Walkusz, W., Hapter, R., Wieczorek, P., Hop, H., Wiktor, J., 2009. Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in mid-summer 2002. Polar Biol. 32 (4), 549-559, http://dx.doi.org/10.1007/s00300-008-0549-2.
[47] Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T., Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., Yulin, A., 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356 (6335), 285-291, http://dx.doi.org/10.1126/science.aai8204.
[48] Promińska, A., Cisek, M., Walczowski, W., 2017. Kongsfjorden and Hornsund hydrography — comparative study based on a multiyear survey in fjords of west Spitsbergen. Oceanologia 59 (4), 397-412, http://dx.doi.org/10.1016/j.oceano.2017.07.003.
[49] Reigstad, M., Wassmann, P., Riser, C. W., Oygarden, S., Rey, F., 2002. Variations in hydrography, nutrients and chlorophyll a in the marginal ice-zone and the central Barents Sea. J. Mar. Syst. 38 (1-2), 9-29, http://dx.doi.org/10.1016/s0924-7963(02)00167-7.
[50] Ruttenberg, K. C., Goni, M. A., 1997. Phosphorus distribution, C:N:P ratios, and delta C-13(oc) in arctic, temperate, and tropical coastal sediments: Tools for characterizing bulk sedimentary organic matter. Mar. Geol. 139 (1-4), 123-145, http://dx.doi.org/10.1016/s0025-3227(96)00107-7.
[51] Rydin, E., Malmaeus, J. M., Karlsson, O. M., Jonsson, P., 2011. Phosphorus release from coastal Baltic Sea sediments as estimated from sediment profiles. Estuar. Coast. Shelf Sci. 92 (1), 111-117, http://dx.doi.org/10.1016/j.ecss.2010.12.020.
[52] Rysgaard, S., Thamdrup, B., Risgaard-Petersen, N., Fossing, H., Berg, P., Christensen, P. B., Dalsgaard, T., 1998. Seasonal carbon and nutrient mineralization in a high-Arctic coastal marine sediment, Young Sound, Northeast Greenland. Mar. Ecol. Prog. Ser. 175, 261-276, http://dx.doi.org/10.3354/meps175261.
[53] Salley, B. A., Bradshaw, J. B., Neillo, B. J., 1986. Results of comparative studies of preservation techniques for nutrient analysis on water samples. Virginia Inst. Mar. Sci. Gloucester Point 89 pp.
[54] Schubert, C. J., Calvert, S. E., 2001. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep Sea Res. Pt. 1 Oceanogr. Res. Pap. 48 (3), 789-810, http://dx.doi.org/10.1016/s0967-0637(00)00069-8.
[55] Schulz, H. D., Zabel, M., 2006. Marine Geochemistry. Springer-Verlag, Berlin-Heidelberg, 574 pp.
[56] Silva, J. A., Bremner, J. M., 1966. Determination and isotope-ratio analysis of different forms of nitrogen in soils. 5. Fixed ammonium. Soil Sci. Soc. Am. Proc. 30 (5), 587-594, http://dx.doi.org/10.2136/sssaj1966.03615995003000050017x.
[57] Smoła, Z., Tatarek, A., Wiktor, J., Wiktor Jr., J., Hapter, R., Kubiszyn, A., Węsławski, J. M., 2017. Primary producers and production in two West Spitsbergen fjords (Hornsund and Kongsfjorden) — a review. Pol. Polar Res. 38 (3), 351-373, http://dx.doi.org/10.1515/popore-2017-0013.
[58] Strickland, J. D. H., Parsons, T. R., 1967. A practical handbook of seawater analysis. Fish. Res. Board Canada Bull. 328, 45-138.
[59] Svendsen, H., Beszczynska-Moller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V., Gerland, S., Orbaek, J. B., Bischof, K., Papucci, C., Zajaczkowski, M., Azzolini, R., Bruland, O., Wiencke, C., Winther, J. G., Dallmann, W., 2002. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res. 21 (1), 133-166, http://dx.doi.org/10.1111/j.1751-8369.2002.tb00072.x.
[60] Thibodeau, B., Lehmann, M. F., Kowarzyk, J., Mucci, A., Gelinas, Y., Gilbert, D., Maranger, R., Alkhati, M., 2010. Benthic nutrient fluxes along the Laurentian Channel: impacts on the N budget of the St. Lawrence marine system. Estuar. Coast. Shelf Sci. 90 (4), 195-205, http://dx.doi.org/10.1016/j.ecss.2010.08.015.
[61] Tremblay, J. E., Anderson, L. G., Matrai, P., Coupel, P., Belanger, S., Michel, C., Reigstad, M., 2015. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog. Oceanogr. 139, 171-196, http://dx.doi.org/10.1016/j.pocean.2015.08.009.
[62] Tremblay, J. E., Gratton, Y., Carmack, E. C., Payne, C. D., Price, N. M., 2002. Impact of the large-scale Arctic circulation and the North Water Polynya on nutrient inventories in Baffin Bay. J. Geophys. Res. 107 (C8), 1-15, http://dx.doi.org/10.1029/2000jc000595.
[63] Tremblay, J. E., Raimbault, P., Garcia, N., Lansard, B., Babin, M., Gagnon, J., 2014. Impact of river discharge, upwelling and vertical mixing on the nutrient loading and productivity of the Canadian Beaufort Shelf. Biogeosciences 11 (17), 4853-4868, http://dx.doi.org/10.5194/bgd-10-16675-2013.
[64] Tremblay, J. E., Simpson, K. G., Martin, J., Miller, L., Gratton, Y., Barber, D., Price, N. M., 2008. Vertical stability and the annual dynamics of nutrients and chlorophyll fluorescence in the coastal, southeast Beaufort Sea. J. Geophys. Res. 113 (C7), 1-14, http://dx.doi.org/10.1029/2007JC004547.
[65] Ullman, W. J., Aller, R. C., 1982. Diffusion-coefficients in nearshore marine-sediments. Limnol. Oceanogr. 27 (3), 552-556, http://dx.doi.org/10.4319/lo.1982.27.3.0552.
[66] van der Zee, C., Slomp, C. P., van Raaphorst, W., 2002. Authigenic P formation and reactive P burial in sediments of the Nazare canyon on the Iberian margin (NE Atlantic). Mar. Geol. 185 (3-4), 379-392, http://dx.doi.org/10.1016/S0025-3227(02)00189-5.
[67] Winkelmann, D., Knies, J., 2005. Recent distribution and accumulation of organic carbon on the continental margin west off Spitsbergen. Geochem. Geophy. Geosy. 6, 1-22, http://dx.doi.org/10.1029/2005gc000916.
[68] Winogradow, A., Pempkowiak, J., 2014. Organic carbon burial rates in the Baltic Sea sediments. Estuar. Coast. Shelf Sci. 138, 27-36, http://dx.doi.org/10.1016/j.ecss.2013.12.001.
[69] Włodarska-Kowalczuk, M., Pearson, T. H., 2004. Soft-bottom macrobenthic faunal associations and factors affecting species distributions in an Arctic glacial fjord (Kongsfjord, Spitsbergen). Polar Biol. 27 (3), 155-167, http://dx.doi.org/10.1007/s00300-003-0568-y.
[70] Yang, B., Song, G. D., Liu, S. M., Jin, J., 2017. Phosphorus recycling and burial in core sediments of the East China Sea. Mar. Chem. 192, 59-72, http://dx.doi.org/10.1016/j.marchem.2017.04.001.
[71] Yasui, S., Kanda, J., Usui, T., Ogawa, H., 2016. Seasonal variations of dissolved organic matter and nutrients in sediment pore water in the inner part of Tokyo Bay. J. Oceanogr. 72 (6), 851-866, http://dx.doi.org/10.1007/s10872-016-0382-0.
[72] Zaborska, A., 2017. Sources of 137Cs to an Arctic fjord (Hornsund, Svalbard). J. Environ. Radioact. 180, 19-26, http://dx.doi.org/10.1016/j.jenvrad.2017.09.021.
[73] Zaborska, A., Pempkowiak, J., Papucci, C., 2006. Some sediment characteristic and sedimentation rates in an Arctic fjord (Kongsfjorden, Svalbard). Rocz. Ochr. Srod. 8, 79-96.
[74] Zaborska, A., Wlodarska-Kowalczuk, M., Legeżyńska, J., Jankowska, E., Winogradow, A., Deja, K., 2016. Sedimentary organic matter sources, benthic consumption and burial in west Spitsbergen fjords — Signs of maturing of Arctic fjordic systems? J. Mar. Syst. 180, 112-123, http://dx.doi.org/10.1016/j.jmarsys.2016.11.005.
[75] Zhu, R. B., Ding, W., Hou, L. J., Wang, Q., 2014. Matrix-bound phosphine and phosphorus fractions in surface sediments of Arctic Kongsfjorden, Svalbard: effects of glacial activity and environmental variables. Chemosphere 103, 240-249, http://dx.doi.org/10.1016/j.chemosphere.2013.12.011.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-a3e2d920-032c-4a62-ab87-0fc5400c23c9
Identyfikatory
DOI 10.1016/j.oceano.2018.05.001