PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Towards development of a prototype high-temperature latent heat storage unit as an element of a RES-based energy system (part 1)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents briefly the state of the art literature review with respect to research in the field of latent heat storage systems as elements of heat only, power only or combined heat and power (CHP) plants utilizing renewable energy sources (RES) for residential applications. Next, a paper introduces initial research carried out in IMP PAN in Gdańsk, Poland, aimed at development of a prototype latent heat storage unit. Identification of the suggested application for the storage unit in a given system is presented. The first stage of development of a prototype heat storage unit, namely a process of PCM pre-selection is discussed.
Rocznik
Strony
489--494
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
  • The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences (IMP PAN), 14 Fiszera St., 80-231 Gdańsk, Poland, kbogucka@imp.gda.pl
  • Polish Academy of Sciences, 1 Defilad Sq., 00-901 Warszawa, Poland
autor
  • The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences (IMP PAN), 14 Fiszera St., 80-231 Gdańsk, Poland
Bibliografia
  • [1] “Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Energy Roadmap 2050”, COM (2011) 885 final, Brussels, (15.12.2011).
  • [2] “Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast)”, Official J. Eur. Union (18.06.2010).
  • [3] J. Fukai, Y. Hamada, Y. Morozumi, and O. Miyatake, “Improvement of thermal characteristics of latent heat thermal energy storage units carbon-fiber brushes: experiments and modelling”, Int. J. Heat and Mass Transfer 46, 4513–4525 (2003).
  • [4] Z. Zhang, N. Zhang, J. Peng, X. Fang, X. Gao, and Y. Fang, “Preparation and thermal energy storage properties of paraffin/ expanded graphite composite phase change material”, Applied Energy 91, 426-431 (2012).
  • [5] Y. Zhong, Q. Guo, S. Li, J. Shi, and L. Liu, “Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage”, Solar Energy Materials and Solar Cell 94, 1011–1014 (2010).
  • [6] D. Ai, L. Su, Z. Gao, C. Deng, and X. Dai, “Study of ZrO2 nanopowders based stearic acid phase change materials”, Particuology 8, 394–397 (2010).
  • [7] Z. Zhang and X. Fang, “Study on paraffin/expanded graphite composite phase change thermal energy storage material”, Energy Conversion and Management 47, 303–310 (2006).
  • [8] A. Sari, “Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: preparation and thermal properties”, Energy Conversion and Management 45, 2033–2042 (2004).
  • [9] W. Wang, X. Yang, Y. fang, J. Ding, and J. Yan, “Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage”, Applied Energy 86, 1479–1483 (2009).
  • [10] S. Qingwen, L. Yi, X. Jianwei, J.Y. Hu, and M. Yuen, “Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles”, Polymer 48, 3317–3323 (2007).
  • [11] I. Dincer and M. Rosen, Thermal Energy Storage Systems and Applications, John Wiley & Sons, London, 2011.
  • [12] F. Agyenim, N. Hewitt, P. Eames, and Mervyn Smyth, “A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)”, Renewable and Sustainable Energy Reviews 14, 615–628 (2010)
  • [13] S. Jegadheeswaran, S.D. Pohekar, and T. Kousksou, “Exergy based performance evaluation of latent heat thermal storage system: a review”, Renewable and Sustainable Energy Reviews 14, 2580–2595 (2010).
  • [14] T. Nuytten, P. Moreno, D. Vanhoudt, L. Jespers, A. Sol´e, and L.F. Cabeza, “Comparative analysis of latent thermal energy storage tanks for micro-CHP systems”, Applied Thermal Engineering 59, 542–549 (2013).
  • [15] P. Gang, L. Jing, and J. Jie, “Analysis of low temperature solar thermal electric generation using regenerative Organic Rankine Cycle”, Applied Thermal Engineering 30, 998–1004 (2010).
  • [16] R. Bayon, E. Rojas, I. Valenzuela, E. Zarza, and J. Leon, “Analysis of the experimental behaviour of a 100 kWth latent heat storage system for direct steam generation in solar thermal power plants”, Applied Thermal Engineering 30, 2643–2651 (2010).
  • [17] V. Zipf, A. Neuh¨auser, D. Willert, P. Nitz, S. Gschwander, and W. Platzer, “High temperature latent heat storage with a screw heat exchanger: Design of prototype”, Applied Energy 109, 462–469 (2013).
  • [18] H. El Qarnia, “Numerical analysis of a coupled solar collector latent heat storage unit using various phase change materials for heating the water”, Energy Conversion and Management 50, 247–254 (2009).
  • [19] K. Kaygusuz, “Experimental and theoretical investigation of latent heat storage for water based solar heating systems”, Energy Conversion and Management 36 (5), 315–323 (1995).
  • [20] K. Kaygusuz and T. Ayhan, “Experimental and theoretical investigation of combined solar heat pump system for residential heating”, Energy Conversion and Management 40, 1377–1396 (1999).
  • [21] K. Kaygusuz, “Experimental and theoretical investigation of a solar heating system with heat pump”, Renewable Energy 21, 79–102 (2000).
  • [22] Y. Varol, A. Koca, H.F. Oztop, and E. Avci, “Forecasting of thermal energy storage performance of Phase Change Material in a solar collector using soft computing techniques”, Expert Systems with Applications 37, 2724–2732 (2010).
  • [23] E-B.S. Mettawee and G.M.R. Assassa, “Experimental study of a compact PCM solar collector”, Energy 31, 2958–2968 (2006).
  • [24] A. K¨urkl¨u, A. ¨Ozmerzi, and S. Bilgin, “Thermal performance of a water-phase change material solar collector”, Renewable Energy 26, 391–399 (2002).
  • [25] I. Al-Hinti, A. Al-Ghandoor, A. Maaly, I. Abu Naqeera, Z. Al-Khateeb, and O. Al-Sheikh, “Experimental investigation on the use of water-phase change material storage in conventional solar water heating systems”, Energy Conversion and Management 51, 1735–1740 (2010)
  • [26] S. Canbazoglu, A. Sahinaslana, A. Ekmekyaparb,Y G. Aksoya, and F. Akarsua, “Enhancement of solar thermal energy storage performance using sodium thiosulfate pentahydrate of a conventional solar water-heating system”, Energy and Buildings 37, 235–242 (2005).
  • [27] L. Mongibello, M. Capezzuto, and G. Graditi, “Technical and cost analyses of two different heat storage systems for residential micro-CHP plants”, Applied Thermal Engineering, available online 26 October 2013, (http://dx.doi.org/10.1016/j.applthermaleng.2013.10.026) (2013).
  • [28] T. Kousksou, P. Bruel, G. Chereau, V. Leoussoff, and T. El Rhafiki, “PCM storage for solar DHW: From an unfulfilled promise to a real benefit”, Solar Energy 85 (9), 2033–2040 (2011).
  • [29] S. Wu and G. Fang, “Dynamic performances of solar heat storage system with packed bed using myristic acid as phase change material”, Energy Buildings, doi:10.1016/j.enbuild.2010.08.029 (2010). [30] M. Ibanez, L.F. Cabeza, C. Sole, J. Roca, and M. Nogues, “Modelization of a water tank including a PCM module”, Applied Thermal Engineering 26, 1328–1333 (2006).
  • [31] Z. Pluta and R. Wnuk, “Influence of a presence of PCM in a traditional storage vessel on an operation of a solar system for preparation of domestic hot water (DHW)”, Bulletin of the Warsaw University of Technology 80, 29–51 (1995), (in Polish).
  • [32] D.N. Nkwetta and F. Haghighat, “Thermal energy storage with phase change material – a state-of-the art review”, Sustainable Cities and Society 10, 87–100 (2014).
  • [33] M.J. Huang, P.C. Eames, and B. Norton, “Thermal regulation of building-integrated photovoltaics using phase change materials”, Int. J. Heat and Mass Transfer 47, 2715–2733 (2004).
  • [34] A. Hasan, S.J.McCormack, M.J. Huang, and B. Norton, “Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics”, Solar Energy 84, 1601–1612 (2010).
  • [35] M. Cellura, G. Ciulla, V.L. Brano, A. Marvuglia, and A. Orioli, “Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics”, PLEA 2008 – 25th Conf. Passive and Low Energy Architecture 1, CD-ROM (2008).
  • [36] J. Kiciński, “Do we have a chance for small-scale energy generation? The examples of technologies and devices for distributed energy systems in micro & small scale in Poland”, Bull. Pol. Ac.: Tech. 61 (4), 749–756 (2013).
  • [37] H. Mehling and L.F. Cabeza, Heat and Cold Storage with PCM – an Up to Date Introduction into Basics and Applications, Springer, Berlin, 2008.
  • [38] M. Kenisarin and K. Mhkamov, “Solar energy storage using phase change materials”, Renewable and Sustainable Energy Reviews 11, 1913–1965 (2007).
  • [39] B. Zalba, J.M. Mann, L.F. Cabeza, and H. Mehling, “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications”, Applied Thermal Engineering 23, 251–283 (2003)
  • [40] S.M. Hasnain, “Review on sustainable thermal energy storage technologies, Part I: Heat storage materials and techniques”, Energy Conversion and Management 39 (11), 1127– 1138 (1998).
  • [41] A. Sharma, V.V. Tyagi, C.R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications”, Renewable and Sustainable Energy Reviews 13, 318–345 (2009).
  • [42] S.D. Sharma and K. Sagara, “Latent heat storage materials and systems: a review”, Int. J. Green Energy 2, 1–56 (2005).
  • [43] R. Baetens, B.P. Jelle, and A. Gustavsend, “Phase change materials for building applications: a state-of-the-art review”, Energy and Buildings 42, 1361–1368 (2010).
  • [44] Y. Zhang , G. Zhou, K. Lin, Q. Zhang, and H. Di, “Application of latent heat thermal energy storage in buildings: state-of-theart and outlook”, Building and Environment 42, 2197–2209 (2007).
  • [45] A. Gil, M. Medrano, I. Martorell, A. La’zaro, P. Dolado, B. Zalba, and L.F. Cabeza, “State of the art on high temperature thermal energy storage for power generation. Part 1 – Concepts, materials and modellization”, Renewable and Sustainable Energy Reviews 14, 31–55 (2010).
  • [46] M. Medrano, M.O. Yilmaz, M. Nogu´es, I. Martorell, J. Roca, and L.F. Cabeza, “Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems”, Applied Energy 86 (10), 2047–2055 (2009).
  • [47] T. Nomura, N. Okinaka, and T. Akiyama, “Technology of latent heat storage for high temperature application: a review”, ISIJ Int. 50 (9), 1229–1239 (2010).
  • [48] H. Hidaka, M. Yamazaki, M. Yabe, H. Kakiuchi, E. Ona, Y. Kojima, and H. Matsuda, “Adjustment of the melting point of Erythritol for heat storage at 80◦C”, Futurestock 2003 – 9th Int. Conf. Thermal Energy Storage 1, CD-ROM (2013).
  • [49] D. Haillot, T. Bauer, U. Kroner, and R. Tamme, “Thermal analysis of phase change materials in the temperature range 120–150◦C”, Thermochimica Acta 513, 49–59 (2011).
  • [50] J. Zimmerman, Z. Lindemann, D. Golański, T. Chmielewski, and W. Włosiński, “Modeling residual stresses generated in Ti coatings thermally sprayed on Al2O3 substrates”, Bull. Pol. Ac.: Tech. 61 (2), 515–526 (2013).
  • [51] J.Q. Sun, R.Y. Zhang, Z.P. Liu, and G.H. Lu, “Thermal reliability test of AL-34%Mg-6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling”, Energy Conversion and Management 48, 619–624 (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a09d2ae2-556b-48ad-a201-0788607361ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.