Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of photoconductive semiconductor switch parameters with selected switch devices in power systems

Treść / Zawartość
Warianty tytułu
Języki publikacji
Currently, work is underway to manufacture and find potential applications for a photoconductive semiconductor switch made of a semi-insulating material. The article analyzes the literature in terms of parameters and possibilities of using PCSS switches, as well as currently used switches in power and pulse power electronic system. The results of laboratory tests for the prototype model of the GaP-based switch were presented and compared with the PCSS switch parameters from the literature. The operating principle, parameters and application of IGBT transistor, thyristor, opto-thyristor, spark gap and power switch were presented and discussed. An analysis of the possibilities of replacing selected elements by the PCSS switch was carried out, taking into account the pros and cons of the compared devices. The possibility of using the currently made PCSS switch from gallium phosphide was also discussed.
Opis fizyczny
Bibliogr. 37 poz., fot., rys., wykr.
  • Faculty of Electronics, Military University of Technology, 2 gen. Sylwestra Kaliskiego St., Warsaw 00-908, Poland
  • [1] Wolfe T. S. et al., Integrated Computational Investigation of Photoconductive Semiconductor Switches in Pulsed Power Radio Frequency Applications, IEEE Transactions on Plasma Science, 44, 60-70 (2016).
  • [2] Mazumder. S. K., An Overview of Photonic Power Electronic Devices, IEEE Transactions on Power Electronics, 31, 6562-6574 (2016).
  • [3] Xu, M., Liu, X., Li, M., Liu, K., Qu, G., Wang, V., Hu, L. & Schneider, H. Transient characteristic of interdigitated GaAs photoconductive semiconductor switch at 1-kHz excitation. IEEE Electron Device Letters 40, 1136-1138 (2019).
  • [4] Tian, L. & Shi, W. Analysis and operation mechanism of semiinsulating GaAs photoconductive semiconductor switches. J. Appl. Phys. 103, 124512-1-7 (2008).
  • [5] Shi, W., Tian, L., Liu, Z., Zhang, L., Zhang, Z., Zhou, L., Liu, H. & Xie, W. 30 kV and 3 kA semi-insulating GaAs photoconductive semiconductor switch. Appl. Phys. Lett. 92, 043511-1-3 (2008).
  • [6] Majda-Zdancewicz, E., Suproniuk M., Pawłowski, M. & Wierzbowski, M. Current state of photoconductive semiconductor switch engineering. Opto-Electron. Rev. 26, 92-102 (2018).
  • [7] Suproniuk M., Kamiński P., Kozłowski R. & Pawłowski M. Efect of deep-level defects on transient photoconductivity of semi-insulating 4H-SiC. Acta Physica Polonica A 125, 1042-1048 (2014).
  • [8] Suproniuk M., Kamiński P., Pawłowski M., Kozłowski R. & Pawłowski M. An intelligent measurement system for the characterisation of defect centres in semi-insulating materials. Przeglad Elektrotechniczny 86, 247-252 (2010). In Polish: [Baza wiedzy w inteligentnym systemie pomiarowym do badania centrów defektowych w półprzewodnikowych materiałach półizolujących].
  • [9] Suproniuk, M., Pawłowski, M., Wierzbowski, M., Majda Zdancewicz, E. & Pawłowski, M. K. Comparison of methods applied in photoinduced transient spectroscopy to determining the defect center parameters: The correlation procedure and the signal analysis based on inverse Laplace transformation. Review of Scientific Instruments 89, 04470-0044710 (2018).
  • [10] Suproniuk, M., Kamiński, P., Kozłowski, R., Pawłowski, M. & Wierzbowski, M., Current status of modelling the semi-insulating 4H–SiC transient photoconductivity for application to photoconductive switches. Opto-Electron. Rev. 25, 171-180 (2017).
  • [11] Kelkar, K. S., Islam, N. E,. Fessler C. M. and Nunnally W. C., Design and characterization of silicon carbide photoconductive switches for high-field applications, J. Appl. Phys., 100, 124205-1-5 (2006).
  • [12] Luan, C., Feng, Y., Huang, Y., Li, H., Li, X., Research on a novel high-power semi-insulating GaAs photoconductive semiconductor switch, IEEE Transactions on Plasma Science, 44, 5, 839-841 (2016).
  • [13] Mauch, D., Sullivan, W., Bullick, A., Neuber, A. & Dickens, J. High Power Lateral Silicon Carbide Photoconductive Semiconductor Switches and Investigation of Degradation Mechanisms. IEEE Transactions on Plasma Science 43, 2021-2031 (2015).
  • [14] Long, H., Jiancang, S., Zhenjie, D., Qingsong H. & Xuelin, Y. Investigation on properties of ultrafast switching in a bulk gallium arsenide avalanche semiconductor switch. J. Appl. Phys. 115, 094503-1-7 (2014).
  • [15] Suproniuk M., Kamiński, P., Kozłowski, R., Teodorczyk, M., Mirowska, A., Majda-Zdancewicz, E., Wierzbowski, M., Piwowarski, K. & Paziewski, P. Semi-insulating GaP as a material for manufacturing photoconductive semiconductor switches. Proc. SPIE 11055, (2019).
  • [16] Castagno S. & Curry R D. Analysis and Comparison of a Fast TurnOn Series IGBT Stack and High-Voltage-Rated Commercial IGBTS. IEEE Transactions on Plasma Science, 34, 1692-1696 (2006).
  • [17] Huang X., Chang W. & Zheng T. Q. Study of the Protection and Driving Characteristics for High Voltage High Power IGBT Modules Used in Traction Convertor. IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), (2015)
  • [18] Ravikumar A. R., et al. Uninterruptible power supply employing IGBTs in parallel with electronic protection. Proceedings of International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth, (1996).
  • [19] Zhang L., Sun K., Huang L. & Igarashi S. Comparison of RB-IGBT and normal IGBT in T-type three-level inverter. in 15th European Conference on Power Electronics and Applications (EPE), (2013).
  • [20] Schwarzer U. et al. Design and Implementation of a Driver Board for a High Power and High Frequency IGBT Inverter. IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289), (2002).
  • [21] Xu X. et al. High-Voltage 4H-SiC GTO Thyristor with Multiple Floating Zone Junction Termination Extension. in 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), (2018).
  • [22] Sujod M. Z. 6 Pulse GTO Thyristor Converter Simulation. in 5th Student Conference on Research and Development, (2007).
  • [23] Ibuka S., Yamamoto A., Hironaka Y., Osada T., Yasuoka K., Ishii S. & Shimizu N. Evaluation of 5500 V-class SI-thyristor as pulsed power switching device utilizing a low inductance testing circuit. in Conference Record of the Twenty-Third International Power Modulator Symposium (Cat. No. 98CH36133), (1998).
  • [24] Rishi N., Ponmurugavel P. S. & Kumar R. D. Attempt To Replace Spark Gap By Thyristor In Marx Circuit, in International Conference on Power, Energy and Control (ICPEC), (2013).
  • [25] Hur J. H., et al. GaAs-Based Opto-Thyristor for Pulsed Power Applications. IEEE Transaction on Electron Devices, 37, 2520–2525, (1990).
  • [26] Schulze H.-J., Niedernostheide F.-J., Kellner-Wedehausen U. & Scheider C. Experimental and numerical investigations of 13-kV diodes and asymmetric light-triggered thyristors, in European Conference on Power Electronics and Applications, (2005).
  • [27] Wang X., et al. 4H-SiC Light Triggered Thyristor with Gradually Doped Thin n-base, in 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), (2018).
  • [28] Flores D., Hidalgo S., Villamor A., Mcquaid S. & Mazarredo I. Improving the firing mechanisms in thyristors for lighting applications. Proceedings of the 8th Spanish Conference on Electron Devices (CDE'2011), (2011).
  • [29] Lis R. J., et al. An LPE Grown InP Based Optothyristor for Power Switching Applications, IEEE Transaction on Electron Devices, 41, 809–813 (1994).
  • [30] Arsić N., Osmokrović P., Jevtovic B. & Kostic D. The influence of the gas insulation parameters on the triggered three-electrode spark gap functioning. in IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena, (1997).
  • [31] Lee B-J., Rahaman H., Frank K. & Nam S. H. High Repetitive Switching of Parallel Micro-Plasma Spark Gaps, in 19th IEEE Pulsed Power Conference (PPC), (2013).
  • [32] Kurhade R. I.,et. al., Implementation of Fast Trigger Generator for High Coulomb Spark Gap Switching, in 3rd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB17), (2017).
  • [33] Rahaman H., et al, Investigation of Spark Gap Discharge in a Regime of Very High Repetitition Rate. IEEE Transactions on Plasma Science, 38, 2752–2757 (2010).
  • [34] Kumar R., et al. Development of Synchronization system of Two Spark Gaps, in IEEE 5th India International Conference on Power Electronics (IICPE), (2012).
  • [35] Berczyński, R., & Kulas, S. J. Analysis of the movement dynamics of contacts and contact-set of the making switches. Przegląd Elektrotechniczny 93, 16-20 (2017). In Polish: [Badanie dynamiki ruchu styków załącznika zwarciowego]
  • [36] Kulas, S.J. The problems of calculation the arc switching time in tulip contact switches. Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts Electrical Contacts, (2004).
  • [37] Kulas S.J., Suronowicz H., Suproniuk M. & Michta, K. Conception a single – phase hybrid switch for power applications, Przeglad Elektrotechniczny, 92, 37–40 (2016). In Polish: [Koncepcja jednofazowego łącznika hybrydowego do zastosowań energetycznych]
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.