Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-9fe94188-4bba-4995-aff0-8d5924999faa

Czasopismo

Demonstratio Mathematica

Tytuł artykułu

Injective composition operators on Lorentz-Bochner spaces

Autorzy Datt, G.  Arora, S. C. 
Treść / Zawartość https://www.degruyter.com/view/j/dema
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In this paper, we extend the notion of essential range to vector-valued functions and present various equivalent conditions for the injectiveness of the composition operators alongwith a characterisation for measurable transformations inducing composition operators between Lorentz-Bochner spaces. Some aspects of the weighted composition operators on Lorentz-Bochner spaces, induced by a measurable transformation and an operator valued map, are also discussed.
Słowa kluczowe
PL operator złożony   funkcja rozkładu   przestrzeń Lorentza-Bochnera  
EN composition operator   distribution function   Lorentz-Bochner space   weighted composition operator  
Wydawca De Gruyter
Czasopismo Demonstratio Mathematica
Rocznik 2013
Tom Vol. 46, nr 4
Strony 741--756
Opis fizyczny Bibliogr. 15 poz.
Twórcy
autor Datt, G.
autor Arora, S. C.
Bibliografia
[1] S. C. Arora, G. Datt, S. Verma, Composition operators on Lorentz spaces, Bull. Austral. Math. Soc. 76 (2007), 205–214.
[2] S. C. Arora, G. Datt, S. Verma, Multiplication and composition operators on Lorentz–Bochner spaces, Osaka J. Math. 45(3) (2008), 629–641.
[3] S. C. Arora, G. Datt, S. Verma, Weighted composition operators on Lorentz spaces, Bull. Korean Math. Soc. 44(4) (2007), 701–708.
[4] C. Benett, R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, Vol. 129, Academic Press London, 1988.
[5] O. Blasco, J. V. Neerven, Spaces of operator-valued functions measurable with respect to the Strong Operator Topology, arXiv:o811.2284v2[math.FA], (2009).
[6] O. Blasco, P. Gregori, Lorentz spaces of vector-valued measures, J. London Math. Soc. 67(3) (2003), 739–751.
[7] Q. Bu, P. K. Lin, Radon–Nikodym property for the projective tensor product on Kothe function spaces, J. Math. Anal. Appl. 293(1) (2004), 149–159.
[8] J. Diestel, J. J. Uhl, Vector Measures, Mathematical Surveys, Amer. Math. Soc. Providence RI, 1977.
[9] W. Feldman, Compact weighted composition operators on Banach lattice, Proc. Amer. Math. Soc. 108 (1990), 95–99.
[10] J. H. Fourie, I. M. Schoeman, Operator valued integral multiplier functions, Quaest. Math. 29(4) (2006), 407–426.
[11] P. R. Halmos, J. Von Neumann, Operator methods in classical mechanics II, Ann. Math. 43 (1942), 332–350.
[12] R. A. Hunt, On L(p,q) spaces, Enseign. Math. 12(2) (1966), 249–276.
[13] A. Kufner, O. John, S. Fucik, Function Spaces, Noordhoff International Publishing, Leyden, 1977.
[14] G. G. Lorentz, Some new functional spaces, Ann. Math. 51(1) (1950), 37–55.
[15] R. K. Singh, J. S. Manhas, Composition Operators on Function Spaces, North Holland Math. Studies 179, Amsterdam, 1993.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-9fe94188-4bba-4995-aff0-8d5924999faa
Identyfikatory