Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model carbonitride precipitation kinetics in Ti-microalloyed HSLA-type steel

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Purpose: The work presents the model of precipitation kinetics of M(C,N) carbonitride in microalloyed steel, containing microaddition of Ti, under conditions of isothermal holding in austenite. The model has been based on the classical theory of nucleation, proposed by Kampmann and Wagner. Design/methodology/approach: In order to analyse precipitation kinetics of Ti(C,N) carbonitride in steel, containing 0.31% C, 0.0043% of N and 0.033% Ti, after austenitizing at the temperature of 1150°C with successive isothermal holding at the temperature of 900°C for 600 s, the CarbNit_kinet computer program has been used. The following physical data have been used for calculations: solubility products of carbides and nitrides, density of carbides and nitrides, parameters of mutual interaction of elements present in austenite, parameters of crystalline structure of carbides and nitrides, energies of interfacial boundaries between the precipitation and the matrix and diffusion coefficients of elements included in carbonitrides in austenite and ferrite. Findings: The calculated results contain data concerning: distribution of particle’s radius, nucleation rate as a function of time, particle’s number within the volume unit as a function of time, chemical composition of the matrix as a function of time and the per cent volume of the particles as a function of time. For given conditions, nucleation of Ti(C,N) carbonitrides in the investigated steel starts after 1 s and is finished after approximately 10 s. Conducted analysis revealed that the coagulation process of precipitations, in which the quantity of precipitations decreases in unit volume, occurs after more than 200 s. Whereas, distinct changes in the content of Ti, C and N dissolved in austenite was observed after the time of 8 s, subsequent to which the process of increase of precipitations begins. Research limitations/implications: Presented model of kinetics enables the analysis of precipitation process of only simple M(C,N) type carbonitrides. Calculation results strongly depend on physical parameters of the model, and in particular, on energy of interfacial boundaries. Practical implications: With the use of applied model, it’s possible to evaluate the content of precipitations of carbonitrides and distribution of their size, calculated on the basis of chemical constitution of steel and parameters of the manufacturing process. Originality/value: The model enables to distinguish specific stages of the precipitation process: nucleation, growth and coagulation. Despite the simplifications, the model makes it possible to predict changes occurring in the precipitation kinetics caused by changes in chemical composition.
Opis fizyczny
Bibliogr. 25 poz.
  • Division of Constructional and Special Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland,
  • [1] T. Gladman, The physical metallurgy of microalloyed steels, 1st Edition, The University Press, Cambridge, 1997.
  • [2] M. Opiela, A. Grajcar, K. Gołombek, The influence of hot-working conditions on the structure and mechanical properties of forged products of microalloyed steel, Archives of Materials Science and Engineering 59/1 (2013) 28-39.
  • [3] J. Adamczyk, E. Kalinowska-Ozgowicz, W. Ozgowicz, R. Wusatowski, Interaction of carbonitrides V(C,N) undissolved in austenite on the structure and mechanical properties of microalloyed V-N steels, Journal of Materials Processing Technology 54 (1995) 23-32.
  • [4] J. Adamczyk, Manufacturing of mass-scale products from structural microalloyed steels in integrated production lines, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 399-402.
  • [5] D. Jandowá, R. Divišová, L. Skálová, J. Drnek, Refinement of steel microstructure by free-forging, Journal of Achievements in Materials and Manufacturing Engineering 16/1 (2006) 17-24.
  • [6] J. Adamczyk, Development of the microalloyed constructional steels, Journal of Achievements in Materials and Manufacturing Engineering 14/1 (2006) 9-20.
  • [7] M. Opiela, Effect of thermomechanical processing on the microstructure and mechanical properties of Nb-Ti-V microalloyed steel, Journal of Materials Engineering and Performance 23 (2014) 3379-3388.
  • [8] A. Grajcar, Thermodynamic analysis of precipitation in Nb-Ti-microalloyed Si-Al TRIP steel, Journal of Thermal Analysis and Calorimetry 118 (2014) 1011- 1020.
  • [9] R. Stako, H. Adrian, A. Adrian, Effect of nitrogen and vanadium on austenite grain growth kinetics a low alloy steel, Materials Characterization 56 (2006) 340-347.
  • [10] H. Adrian, E. Głowacz, The effect of nitrogen and microalloying elements (V and V+Al) on austenite grain growth of 40Cr8 steel, Archives of Metallurgy and Materials 55 (2010) 107-116.
  • [11] M. Opiela, Thermodynamic analysis of the precipitation of carbonitrides in microalloyed steels, Materiali in Tehnologije 49 (2015) 395-401.
  • [12] M. Opiela, Elaboration of thermomechanical treatment conditions of Ti-V and Ti-Nb-V microalloyed forging steels, Archives of Metallurgy and Materials 49 (2014) 1181-1188.
  • [13] B. Eghbali, A. Abdollah-zadeh, Influence of deformation temperature on the ferrite grain refinement in a low carbon Nb-Ti microalloyed steel, Journal of Materials Processing Technology 180 (2006) 44-48.
  • [14] T. Gladman, D. Dulie, I.D. McIvor, Structure-property relationship in high-strength microalloyed steels, Proceedings of the International Conference Microalloying’75, New York, 1975, 32-35.
  • [15] H. Adrian, Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without addition of aluminium, Material Science and Technology 8 (1992) 406-415.
  • [16] R. Wagner, R. Kampmann, Materials science and technology: a comprehensive treatment, John Willey & Sons Inc., New York, 1991, 213-302.
  • [17] M. Perez, M. Dumont, D. Acevedo-Reyes, Implementation of classical nucleation and growth theories for precipitation, Acta Materialia 56 (2008) 2119-2132.
  • [18] M. Perez, E. Courtois, D. Acevedo-Reyes, T. Epicier, P. Maguis, Precipitation of nibium carbonitrides: chemical composition measurements and modeling, Materials Science Forum 539-543 (2007) 4196-4201.
  • [19] M. Perez, A. Deschamps, Microscopic modeling of simultaneous two-phase precipitation: application to carbide precipitation in low-carbon steels, Materials Science and Engineering A 360 (2003) 214-219.
  • [20] B. Dutta, E.J. Palmiere, C.M. Sellars, Modelling the kinetics of strain induced precipitation Nb in microalloyed steels, Acta Materialia 49 (2001) 785-794.
  • [21] W. Liu, A new theory and kinetic modeling of straininduced precipitation of Nb(C,N) in microalloyed astenite, Metallurgical and Materials Transactions A 26 (1995) 1641-1657.
  • [22] P. Maugis, M. Gouné, Kinetics of vanadium carbonitride precipitation in steel: a computer model, Acta Materialia 53 (2005) 3359-3367.
  • [23] M. Perez, Gibbs-Thomson effects in phase transformation, Scripta Materialia 52 (2005) 709-712.
  • [24] I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solution, Journal of Physics and Chemistry of Solids 19 (1961) 35-50.
  • [25] C. Wagner, Theorie der alterung von niederschlagen durch umlösen, Zeitschrift Für Elektrochemie 65 (1961) 581-591 (in German).
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.