PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the Hamming network to the classification of surfaces after abrasive machining

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of artificial neural networks for modelling and inference about surface parameters is a more and more often undertaken research topic. Based on the analysis of the ranges of suitability of surface topography parameters, a variety of different parameters can be observed to identify surfaces with different features and different conditions of use. The issues of surface topography analysis and determination of surface condition after abrasive machining are of fundamental importance. Currently, when assessing the surface intended for interaction with the other surface, it is possible to use many surface evaluation parameters. Assigning the machined surface to the appropriate assessment group, especially in automated quality control systems, requires a preliminary surface classification. In this article Hamming's network was used for the surface classification along with modification of Hamming distance.
Rocznik
Strony
114--126
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Koszalin, Poland
autor
  • KTH Royal Institute of Technology, Industrial Engineering and Management, Department of Prod. Eng., Sweden
autor
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Koszalin, Poland
Bibliografia
  • [1] MARINESCU D.I., et al., 2007, Handbook of Machining with Grinding Wheels, CRC Press, Taylor and Francis Group.
  • [2] MARINESCU D.I., UHLMANN E., DOI T.K., 2007, Handbook of Lapping and Polishing, CRC Press. Taylor and Francis Group.
  • [3] OLIVEIRA J.F.G., SILVA E.J., GUO C., HASHIMOTO F., 2009, Industrial challenges in grinding, CIRP Annals – Manufacturing Technology, 58, 663-680.
  • [4] DARAFON A., WARKENTIN A., BAUER R., 2013, Characterization of grinding wheel topography using a white chromatic sensor, International Journal of Machine Tools & Manufacture, 70, 22-31.
  • [5] YAN L., RONG Y.M., JIANG F., ZHOU Z.X., 2011, Three-dimension surface characterization of grinding wheel using white light interferometer, International Journal of Advanced Manufacturing Technology, 55, 133-141.
  • [6] BUTLER D.L., BLUNT L.A., SEE B.K., WEBSTER J.A., STOUT K.J., 2002, The characterisation of grinding wheels using 3D surface measurement techniques, Journal of Materials Processing Technology, 127, 234-237.
  • [7] KAPŁONEK W., NADOLNY K., 2012, Advanced 3d laser microscopy for measurements and analysis of vitrified bonded abrasive tools, Journal of Engineering Science and Technology, 7, No. 6, 661-678.
  • [8] LIPIŃSKI D., KACALAK W., TOMKOWSKI R., 2014, Methodology of evaluation of abrasive tool wear with the use of laser scanning microscopy, Scanning, 36, 53-63.
  • [9] DAVIM J.P., 2010, Surface Integrity in Machining, Springer-Verlag.
  • [10] CZICHOS H., SAITO T., SMITH L., 2006, Springer handbook of materials measurement methods, Springer-Verlag.
  • [11] LEE P.H., NAM J.S., LI Ch., LEE S.W., 2012, An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL), International Journal of Precision Engineering and Manufacturing ,13/3, 331-338.
  • [12] NGUYEN T., ZHANG L.C., 2010, Grinding–hardening using dry air and liquid nitrogen, Prediction and verification of temperature fields and hardened layer thickness, International Journal of Machine Tools and Manufacture, 50, 901-910.
  • [13] SADEGHI M.H., HADAD M.J., TAWAKOLI T., VESALI A., EMAMI M., 2010, An investigation on surface grinding of AISI 4140 hardened steel using minimum quantity lubrication-MQL technique, International Journal of Material Forming, 3, 241-251.
  • [14] LI K.M., LIN CH.P., 2012, Study on minimum quantity lubrication in micro-grinding, International Journal of Advanced Manufacturing Technology, 62, 99-105.
  • [15] WHITEHOUSE D.J., 1997, Surface metrology, Measurement Science and Technology, 8, 955-972.
  • [16] SENIN N., GROPPETTI R., 2005, Surface microtopography design and manufacturing through topography descriptors: an application to prosthetic implant surfaces, Computer-Aided Design, 37, 1163-1175.
  • [17] MATHIA T.G., PAWLUS P., WIECZOROWSKI M., 2011, Recent trends in surface metrology, Wear, 271, 494-508.
  • [18] WHITEHOUSE D.J., 2001, Function maps and the role of surfaces, International Journal of Machine Tools and Manufacture, 41, 1847-1861.
  • [19] PETROLOULOS G.P., 2007, Multi-parameter analysis and modelling of engineering surface texture, Journal of Achievements in Materials and Manufacturing Engineering, 24, 91-100.
  • [20] DELTOMBE R., KUBIAK K.J., BIGERELLE M., 2014, How to select the most relevant 3D roughness parameters of a surface, Scanning, 36, 150-160.
  • [21] NAJJAR D., BIGERELLE M., IOST A., 2003, The computer-based bootstrap method as a tool to select a relevant surface roughness parameter, Wear, 254, 450-460.
  • [22] BIGERELLE M., NAJJAR D., IOST A., 2003. Relevance of roughness parameters for describing and modelling machined surfaces, Journal of Materials Science, 38, 2525-2536.
  • [23] ZHONGXIANG H., LEI Z., JIAXU T., XUEHONG M., XIAOJUN S., 2009, Evaluation of three-dimensional surface roughness parameters based on digital image processing, International Journal of Advanced Manufacturing and Technology, 40, 342-348.
  • [24] SCOTT P.J., 2009, Feature parameters, Wear, 266, 548-551.
  • [25] CHOI Y.S., PIEHLER H.R., ROLLETT A.D., 2007, Introduction and application of modified surface roughness parameters based on the topographical distributions of peaks and valleys, Materials Characterization, 58, 901-908.
  • [26] TOMKOWSKI R., 2013, Analysis of the geometric features of surfaces after the abrasive processes with the use of new evaluation parameters, PhD Thesis, Koszalin University of Technology, (in Polish).
  • [27] MAINSAH E., NDUMU D.T., 1998, Neural network application in surface topography, International Journal of Machine Tools and Manufacture, 38, 591-598.
  • [28] ARAMBURO J., TREVINO A.R., 2008, Advances in Robotics, Automation and Control, IntechOpen.
  • [29] ALI Y.M., ZHANG L.C., 1999, Surface roughness prediction of ground components using a fuzzy logic approach, Journal of Materials Processing Technology, 89-90, 561-568.
  • [30] SAMHOURI M.S., SURGENOR B.W., 2005, Surface roughness in grinding: on-line prediction with adaptive neuro-fuzzy inference system, Transactions of NAMRI/SME, 33, 57-64.
  • [31] FADARE D.A., ONI A.O., 2009, Development and application of a machine vision system for measurement of surface roughness, ARPN Journal of Engineering and Applied Sciences, 4/5, 30-37.
  • [32] ROSEM B.G., CRAFOORD R., 1992, Interactive surface modelling, Model of a function-oriented expert system for specification of surface properties, Industrial Metrology, 2, 107-119.
  • [33] ROSEN B.G., OHLSSON R., WESTBERG J., 1995, Interactive surface modelling, an implementation of an expert system for specification of surface roughness and topography, International Journal of Machine Tools and Manufacture, 35/2, 317-324.
  • [34] POULIQUEN P.O., ANDREOU A.G., STROHBEHN K., 1996, Winner-Takes-All associative memory: A Hamming distance vector quantizer, Analog Integrated Circuits and Signal Processing, 13, 211-222.
  • [35] KACALAK W., SZAFRANIEC F., TOMKOWSKI R., LIPIŃSKI D., ŁUKIANOWICZ C., 2011, Methodology for evaluation of classification abilities of parameters characterizing stereometry features of surface irregularities, Measurement Automation Monitoring, 57/05, 542-546, (in Polish).
  • [36] MILLER G., 1956, The magical number seven, plus or minus two: some limits on our capacity for processing information, The Psychological Review, 63, 81-97. http://web.archive.org/web/20080728075223/www.Musanim.com/miller1956/
  • [37] ISO 25178-2:2012 Geometrical product specifications (GPS) -- Surface texture: Areal -- Part 2: Terms, definitions and surface texture parameters.
  • [38] ZADEH L.A., 1965, Fuzzy sets, Information and Control, 8, 338-353.
  • [39] LIPMANN R.P., 1987, An introduction to computing with neural nets, ASSP Magazine, IEEE, 4, 4-22.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e5a22e1-104d-4e3e-91d6-b351cde80048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.