Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of 239,240 Pu, 137Cs and heavy metals for dating of river sediments

Warianty tytułu
Języki publikacji
The periodical nature of overbank sediment accumulation makes their detailed dating much more difficult than dating sediments in water reservoirs. To improve the commonly used dating with 137Cs, we combined this method with Pu isotopes and heavy metals in order to date sediments of the Chechło River (southern Poland), which was polluted by a lead-zinc mine. We analyzed 137Cs, Pu isotopes and heavy metal concentrations in three profiles of overbank sediments and in two profiles of subsidence basins in the lower river reach. The results indicate a lower accuracy and higher uncertainty of the overbank than the dating of reservoir sediments. The application of plutonium isotopes provided very important information validating caesium peaks or providing the principal information regarding horizons dated with heavy metals. The obtained dates give the earliest possible age of particular horizons with the actual sediment deposition delayed by several to a dozen years. This investigation shows that using plutonium radioisotopes can be a useful tool for dating, particularly of the youngest overbank sediments where numerous sedimentation gaps cause uncertainties in the application of other methods, e.g. radiocaesium and heavy metals.
Słowa kluczowe
Opis fizyczny
Bibliogr. 43 poz., rys.
  • Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Radzikowskiego 152, Poland
  • 1. Baeza A Guillen J Salamanca MA Rodriguez A and Ager FJ 2009. Radiological and multi-element analysis of sediments from the Proserpina reservoir (Spain) dating from Roman times. Journal of Environmental Radioactivity 100: 866–874 DOI 10.1016/j.jenvrad.2009.06.020.
  • 2. Brudecki K Suwaj J and Mietelski JW 2009. Plutonium and 137Cs in forest litter: an approximate map of plutonium from Chernobyl deposition in North-eastern and Eastern Poland. Nukleonika 54: 199–209.
  • 3. Ciszewski D 1997. Source of pollution as a factor controlling dispersal of heavy metals in river bottom sediments. Environmental Geology 29: 50–57.
  • 4. Ciszewski D 1998. Channel processes as a factor controlling accumulation of heavy metals in river bottom sediments: consequences for pollution monitoring (Upper Silesia Poland). Environmental Geology 36: 45–54 DOI 10.1007/s002540050319.
  • 5. Ciszewski D 2001. Flood-related changes in heavy metal concentrations within sediments of the Biała Przemsza River. Geomorphology 40: 205–218 DOI 10.1016/S0169-555X(01)00044-7.
  • 6. Ciszewski D 2003. Heavy metals in vertical profiles of the middle Odra River overbank sediments: Evidence for pollution changes. Water Air and Soil Pollution 143: 81–98 DOI 10.1023/A:1022825103974.
  • 7. Ciszewski D Czajka A and Blazej S 2008. Rapid migration of heavy metals and (137)Cs in alluvial sediments Upper Odra River valley Poland. Environmental Geology 55: 1577–1586 DOI 10.1007/s00254-007-1108-9.
  • 8. Ciszewski D and Malik I 2004. The use of heavy metal concentrations and dendrochronology in the reconstruction of sediment accumulation Mala Panew River Valley southern Poland. Geomorphology 58: 161–174 DOI 10.1016/S0169-555X(03)00230-7.
  • 9. Ciszewski D 2019. The past and prognosis of mining cessation impact on river sediment pollution. Journal of Soils and Sediments 19: 393–402 DOI 10.1007/s11368-018-2015-2.
  • 10. Cuddihy RG Finch GL Newton GJ Hahn FF Mewhinney JA Rothenberg SJ and Powers DA 1989. Characteristics of radioactive particles released from the Chernobyl nuclear reactor. Environmental Science & Technology23(1): 89–95 DOI 10.1021/es00178a011.
  • 11. Devell L Tovedal H Bergström U Appelgren A Chyssler J and Andersson L 1986. Initial observations of fallout from the reactor accident at Chernobyl. Nature 321(6067): 192–193 DOI 10.1038/321192a0.
  • 12. Diaz-Asencio M Sanchez-Cabeza JA Bolanos-Alvarez Y Ruiz-Fernandez AC Gomez-Batista M Morabito R and Alonso-Hernandez C 2014. One century of sedimentation and Hg pollution at the mouth of the Sagua la Grande River (Cuba). Ciencias Marinas 40: 321–337 DOI 10.7773/cm.v40i4.2472.
  • 13. Everettt SE Tims SG Hancock GJ Bartley R and Fifield LK 2008. Comparison of Pu and 137Cs as tracers of soil and sediment transport in a terrestrial environment. Journal of Environmental Radioactivity 99: 383–393 DOI 10.1016/j.jenvrad.2007.10.019.
  • 14. Foulds SA Macklin MG and Brewer PA 2013. Agro-industrial alluvium in the Swale catchment northern England as an event marker for the Antropocene. Holocene 23: 587–602 DOI 10.1177/0959683612465445.
  • 15. Frignani M and Bellucci LG 2004. Heavy metals in marine coastal sediments: Assessing sources fluxes history and trends. Annali di Chimica 94: 479–486 DOI 10.1002/adic.200490061.
  • 16. Hancock GJ Leslie C Everett SE Tims SG Brunskill GJ and Haese R 2011. Plutonium as a chronomarker in Australian and New Zealand sediments: a comparison with 137Cs. Journal of Environmental Radioactivity 102: 919–929 DOI 10.1016/j.jenvrad.2009.09.008.
  • 17. Hudson-Edwards KA Macklin MG Curtis CD and Vaughan DJ 1998. Chemical remobilization of contaminant metals within floodplain sediments in an incising river system: implications for dating and chemostratigraphy. Earth Surface Processes and Landforms 23: 671–684 DOI 10.1002/(SICI)1096-9837(199808)23:8<671::AID-ESP871>3.0.CO;2-R.
  • 18. Kalbitz K and Wenrich R 1998. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Science of the Total Environment 209: 27–39 DOI 10.1016/S0048-9697(97)00302-1.
  • 19. Komosa A 1999. River sediment contamination with plutonium isotopes and heavy metals in Lublin agglomeration (Poland). Polish Journal of Environmental Studies 8: 155–160.
  • 20. LaRosa JJ Cooper EL Ghods-Esphahani A Jansta V Makarewicz M Shawky S and Vajda N 1992. Radiochemical methods used by the IAEA’s laboratories at Seibersdorf for the determination of 90Sr 144Ce and Pu radionuclides in environmental samples collected for the international Chernobyl project. Journal of Environmental Radioactivity 17(2–3): 183–209 DOI 10.1016/0265-931X(92)90025-O.
  • 21. Lintern A Leahy PJ Heijnis H Zawadzki A Gadd P Jacobsen G Deletic A and Mccarthy DT 2016. Identifying heavy metal levels in historical flood water deposits using sediment cores. Water Research 105: 34–46 DOI 10.1016/j.watres.2016.08.041.
  • 22. Łokas E Wachniew P Ciszewski D Owczarek P and Chau ND 2010a. Simultaneous Use of Trace metals 210Pb and 137Cs in floodplain sediments of a lowland river as indicators of anthropogenic impacts. Water Air and Soil Pollution 207: 57–71 DOI 10.1007/s11270-009-0119-4.
  • 23. Łokas E Mietelski JW Kleszcz K and Tomankiewicz E 2010b. A sequential procedure for determining 238Pu 239+240Pu 241Am 90Sr U and Th activities in soils and peats from Spitsbergen. Nukleonika 55: 195–199.
  • 24. Łokas E Mietelski JW Ketterer ME Kleszcz K Wachniew P Michalska S and Miecznik M 2013. Sources and vertical distribution of 137Cs 238Pu 239+240Pu and 241Am in peat profiles from southwest Spitsbergen. Applied Geochemistry 28: 100–108 DOI 10.1016/j.apgeochem.2012.10.027.
  • 25. Matisoff G Ketterer M Rosén K Mietelski JW Vitko LF Persson H and Lokas E 2011. Downward migration of Chernobyl-derived radionuclides in soils in Poland and Sweden. Applied Geochemistry 26 (1): 105–115 DOI 10.1016/j.apgeochem.2010.11.007.
  • 26. Mietelski JW and Wąs B 1995. Plutonium from Chernobyl in Poland. Applied Radiation and Isotopes. 46: 1203–1211 DOI 10.1016/0969-8043(95)00162-7.
  • 27. Mietelski JW Kubica B Gaca P Tomankiewicz E Błażej S Tuteja-Krysa M Stobiński M 2008a. 238Pu 239+ 240Pu 241Am 90Sr and 137Cs in mountain soil samples from the Tatra National Park (Poland). Journal of Radioanalytical and Nuclear Chemistry 275: 523–533 DOI 10.1007/s10967-007-7026-1.
  • 28. Mietelski JW Mirocha S and Bogacz J 2008b. Plutonium and gamma emitters in the northeastern part of Bory Tucholskie (Poland). Nukleonika 53: 17–25.
  • 29. Mróz T Ł okas E K ocurek J a nd Gąsiorek M 2 017. Atmospheric fallout radionuclides in peatland from Southern Poland. Journal of Environmental Radioactivity 175–176: 25–33 DOI 10.1016/j.jenvrad.2017.04.012.
  • 30. Pirrie D Camm GS Sear LG and Hughes SH 1997. Mineralogical and geochemical signature of mine waste contamination Tresilian River Fal Estuary Cornwall UK. Environmental Geology 29: 58–65 DOI 10.1007/s002540050104.
  • 31. Poręba G and Bluszcz A 2007. Determination of the initial 137Cs fallout on the areas contaminated by Chernobyl fallout. Geochronometria 26: 35–38 DOI 10.2478/v10003-007-0009-y.
  • 32. Provansal M Villet J Eyrolle F Raccasi G Gurriaran R Antonelli C 2010. High-resolution evaluation of recent bank accretion rate of the managed Rhone: a case study by multi-proxy approach. Geomorphology 117: 287–297 DOI 10.1016/j.geomorph.2009.01.017.
  • 33. Rao RR and Cooper EL 1995. Separation of low levels of actinides by selective oxidation/reduction and co-precipitation with neodymium fluoride. Journal of Radioanalytical and Nuclear Chemistry 197: 133–148 DOI 10.1007/BF02040226.
  • 34. Rinklebe J and Du Laing G 2011. Factors controlling the dynamics of trace metals in frequently flooded soils p. 245–270. In Selim HM [ed.] Dynamics and Bioavailability of heavy metals in the root zone CRC Press.
  • 35. Sanders LM Enrich-Prast A Taffs KH Stokes TD and Sanders Ch 2017. 240+239Pu depositional signatures as a viable geochronological tool in the Amazon Basin. Geochronometria 44: 142–149 DOI 10.1515/geochr-2015-0068.
  • 36. Sill CW 1987. Precipitation of actinides as fluorides or hydroxides for high resolution alpha spectrometry. Nuclear Chemistry and Waste Management 7: 201–215.
  • 37. Stach A 1996. Możliwosci i ograniczenia zastosowania cezu-137 do badan erozji gleb na obszarze Polski. Instytut Uprawy Nawożenia i Gleboznawstwa w Puławach. Seria K 2.11: 203–226.
  • 38. Tims SG Everett SE Fifield LK Hancock GJ and Bartley R 2010. Plutonium as a tracer of soil and sediment movement in the Herbert River Australia. Nuclear Instruments and Methods in Physics Research B 268: 1150–1154 DOI 10.1016/j.nimb.2009.10.121.
  • 39. UNSCEAR 2000. Sources and effects of ionizing radiation vol 1. United Nations Scientific Committee on the Effects of Atomic Radiation New York 245 pp.
  • 40. USEPA 1994. Method 3051: Microwave assisted acid digestion of sediments sludges soils and oils Revision 0. USEPA.
  • 41. Yao SC and Xue X 2016. Sediment records of the metal pollution at Chihu Lake near a copper mine at the middle Yangtze River in China. Journal of Limnology 75: 121–134 DOI 10.4081/jlimnol.2015.1241.
  • 42. Žák K Rohovec J and Navrátil T 2009. Fluxes of heavy metals from a highly polluted watershed during flood events: a case study of the Litavka River Czech Republic. Water Air and Soil Pollution 203: 343–358 DOI 10.1007/s11270-009-0017-9.
  • 43. Zeng F Wu K He Q Diao X and Li L 2017. Model establishment for ponding in coal mining subsidence areas and its prediction: case study of Northern Jining China. Geotechnical and Geological Engineering 35: 83–89 DOI 10.1007/s10706-016-0086-7.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.